Tag Archives: 12v dc motor high torque low rpm

China manufacturer CHINAMFG MD016016-64 117rpm 5kg. Cm High Torque Low Rpm 16mm 12V Stepper DC Gear Motor vacuum pump oil

Product Description

16MM DC Planetary metal dc Gear Motor
 

Product Description

above specifications just for reference and customizable according to requirements.

motor specifications:16mm motor
motors (optional) brushless dc motor,brushed dc motor,stepper motor,coreless motor
voltage(optional) 3-24v
input speed <=15000rpm
current 300mA max

performance Data:16mm Planetary Metal Gearbox brush motor / brushless motor / Stepper Motor / Coreless Motor
Model Rated Speed Max Speed Max Rated Torque Max Instant Torque Reduction Ratio Gearbox Length Overall Length
  rpm rpm gf.cm gf.cm   mm mm
MD016016-4 1875 7500 5000 10000 4 11.5 38.4
MD016016-6 1250 5000 5000 10000 6 11.5 38.4
MD016016-16 469 1875 5000 10000 16 14.8 41.7
MD016016-24 313 1250 5000 10000 24 14.8 41.7
MD016016-36 208 833 5000 10000 36 14.8 41.7
MD016016-64 117 469 5000 10000 64 18.1 45.0
MD016016-96 78 313 5000 10000 96 18.1 45.0
MD016016-144 52 208 5000 10000 144 18.1 45.0
MD016016-216 35 139 5000 10000 216 18.1 45.0
MD016016-256 29 117 5000 10000 256 21.4 48.3
MD016016-384 20 78 5000 10000 384 21.4 48.3
MD016016-576 13 52 5000 10000 576 21.4 48.3
MD016016-864 9 35 5000 10000 864 21.4 48.3
MD016016-1296 6 23 5000 10000 1296 21.4 48.3
* The above specifications are subject to change without prior notice. They are for reference only and can be customized as required.

Please let us know your requirements and we will provide you with micro transmission solutions.
 

Product details show:

 

Application

Smart wearable devices   watch,VR,AR,XR and etc.
Household application kitchen appliances, sewing machines, corn popper, vacuum cleaner, garden tool, sanitary ware, window curtain, intelligent closestool, sweeping robot, power seat, standing desk, electric sofa, TV, computer, treadmill, spyhole, cooker hood, electric drawer, electric mosquito net, intelligent cupboard, intelligent wardrobe, automatic soap dispenser, UV baby bottle sterilizer, lifting hot pot cookware, dishwasher, washing machine, food breaking machine, dryer, air conditioning, dustbin, coffee machine, whisk,smart lock,bread maker,Window cleaning robot and etc.
communication equipment 5G base station,video conference,mobile phone and etc.
Office automation equipments   scanners, printers, multifunction machines copy machines, fax (FAX paper cutter), computer peripheral, bank machine,  screen, lifting socket,  display,notebook PC and etc.
Automotive products  conditioning damper actuator, car DVD,door lock actuator, retractable rearview mirror, meters, optic axis control device, head light beam level adjuster, car water pump, car antenna, lumbar support, EPB, car tail gate electric putter, HUD, head-up display, vehicle sunroof, EPS, AGS, car window, head restraint, E-booster, car seat, vehicle charging station and etc.
Toys and models  radio control model, automatic cruise control, ride-on toy, educational robot, programming robot, medical robot, automatic feeder, intelligent building blocks, escort robot and etc.
Medical equipments  blood pressure meter, breath machine, medical cleaning pump, medical bed, blood pressure monitors, medical ventilator, surgical staplers, infusion pump, dental instrument, self-clotting cutter, wound cleaning pump for orthopedic surgery,electronic cigarette, eyebrow pencil,fascia gun, , surgical robot,laboratory automation and etc.
Industrials   flow control valves, seismic testing,automatic reclosing,Agricultural unmanned aerial vehicle,automatic feeder ,intelligent express cabinet and etc.
Electric power tools  electric drill, screwdriver,garden tool and etc.
Precision instruments  optics instruments,automatic vending machine, wire-stripping machine and etc.
Personal care tooth brush, hair clipper, electric shaver, massager, vibrator, hair dryer, rubdown machine, scissor hair machine, foot grinder,anti-myopia pen, facial beauty equipment, hair curler,Electric threading knife,POWER PERFECT PORE, Puff machine,eyebrow tweezers and etc.
Consumer electronics camera, mobile phone,digital camera, automatic retracting device,camcorder,  kinescope DVD,headphone stereo, cassette tape recorder, bluetooth earbud charging case, turntable, tablet,UAV(unmanned aerial vehicle),surveillance camera,PTZ camera, rotating smart speaker and etc.
robots educational robot, programming robot, medical robot, escort robot and etc.

Company Profile

HangZhou CHINAMFG Machinery & Electronics Co., Ltd was established in 2001,We provide the total drive solution for customers from design, tooling fabrication, components manufacturing and assembly. 

Workshop

Testing Equipment

1) Competitive Advantages

  • 1) Competitive Advantages
    19+year experience in manufacturing motor gearbox
    We provide technical support from r&d, prototype, testing, assembly and serial production , ODM &OEM
    Competitive Price
    Product Performance: Low noise, High efficiency, Long lifespan
    Prompt Delivery: 15 working days after payment
    Small Orders Accepted

 2) Main Products

  • Precision reduction gearbox and its diameter:3.4mm-38mm,voltage:1.5-24V,power: 0.01-40W,output speed:5-2000rpm and output torque:1.0 gf.cm -50kgf.cm,

  • Customized worm and gear transmission machinery;
  • Precise electromechanical motion module;
  • Precise component and assembly of plastic and metal powder injection.

Our Services

  • ODM & OEM
  • Gearbox design and development
  • Related technology support
  • Micro drive gearbox custom solution

Packaging & Shipping

1) Packing Details

packed in nylon firstly, then carton, and then reinforced with wooden case for outer packing.
Or according to client’s requirement.

2) Shipping Details

samples will be shipped within 10 days;
batch order leading time according to the actual situation.

Certifications

Certifications

We Have passed to hold ISO9001:2015(CN11/3571),ISO14001:2004(U006616E0153R3M), ISO13485:2016(CN18/42018) and IATF16949:2016(CN11/3571.01).

and more…

FAQ

FAQ

1. Can you make the gearbox with custom specifications?
YES. We have design and development team, also a great term of engineers, each of them have
many work years experience.

2.Do you provide the samples?
YES. Our company can provide the samples to you, and the delivery time is about 5-15days according to the specification of gearbox you need.

3.What is your MOQ?
Our MOQ is 2000pcs. But at the beginning of our business, we accept small order.

4. Do you have the item in stock?
I am sorry we donot have the item in stock, All products are made with orders.

5. Do you provide technology support?
YES. Our company have design and development team, we can provide technology support if you
need.

6.How to ship to us?
We will ship the goods to you according to the DHL or UPS or FEDEX etc account you provide. 

7.How to pay the money?
We accept T/T in advance. Also we have different bank account for receiving money, like US dollors or RMB etc.

8. How can I know the product is suitable for me?
Frist, you need to provide us the more details information about the product. We will recommend the item to you according to your requirement of specification. After you confirm, we will prepare the samples to you. also we will offer some good advances according to your product use.

9. Can I come to your company to visit?
YES, you can come to our company to visit at anytime, and welcome to visit our company.

10. How do contact us ?
Please send an inquiry

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: High Speed
Excitation Mode: Permanent Magnet
Function: Control, Driving
Casing Protection: Drip-Proof
Number of Poles: 4
Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

How does the voltage and power rating of a gear motor impact its suitability for different tasks?

The voltage and power rating of a gear motor are important factors that influence its suitability for different tasks. These specifications determine the motor’s electrical characteristics and its ability to perform specific tasks effectively. Here’s a detailed explanation of how voltage and power rating impact the suitability of a gear motor for different tasks:

1. Voltage Rating:

The voltage rating of a gear motor refers to the electrical voltage it requires to operate optimally. Here’s how the voltage rating affects suitability:

  • Compatibility with Power Supply: The gear motor’s voltage rating must match the available power supply. Using a motor with a voltage rating that is too high or too low for the power supply can lead to improper operation or damage to the motor.
  • Electrical Safety: Adhering to the specified voltage rating ensures electrical safety. Using a motor with a higher voltage rating than recommended can pose safety hazards, while using a motor with a lower voltage rating may result in inadequate performance.
  • Application Flexibility: Different tasks or applications may have specific voltage requirements. For example, low-voltage gear motors are commonly used in battery-powered devices or applications with low-power requirements, while high-voltage gear motors are suitable for industrial applications or tasks that require higher power output.

2. Power Rating:

The power rating of a gear motor indicates its ability to deliver mechanical power. It is typically specified in units of watts (W) or horsepower (HP). The power rating impacts the suitability of a gear motor in the following ways:

  • Load Capacity: The power rating determines the maximum load that a gear motor can handle. Motors with higher power ratings are capable of driving heavier loads or handling tasks that require more torque.
  • Speed and Torque: The power rating affects the motor’s speed and torque characteristics. Motors with higher power ratings generally offer higher speeds and greater torque output, making them suitable for applications that require faster operation or the ability to overcome higher resistance or loads.
  • Efficiency and Energy Consumption: The power rating is related to the motor’s efficiency and energy consumption. Higher power-rated motors may be more efficient, resulting in lower energy losses and reduced operating costs over time.
  • Thermal Considerations: Motors with higher power ratings may generate more heat during operation. It is crucial to consider the motor’s power rating in relation to its thermal management capabilities to prevent overheating and ensure long-term reliability.

Considerations for Task Suitability:

When selecting a gear motor for a specific task, it is important to consider the following factors in relation to the voltage and power rating:

  • Required Torque and Load: Assess the torque and load requirements of the task to ensure that the gear motor’s power rating is sufficient to handle the expected load without being overloaded.
  • Speed and Precision: Consider the desired speed and precision of the task. Motors with higher power ratings generally offer better speed control and accuracy.
  • Power Supply Availability: Evaluate the availability and compatibility of the power supply with the gear motor’s voltage rating. Ensure that the power supply can provide the required voltage for the motor’s optimal operation.
  • Environmental Factors: Consider any specific environmental factors, such as temperature or humidity, that may impact the gear motor’s performance. Ensure that the motor’s voltage and power ratings are suitable for the intended operating conditions.

In summary, the voltage and power rating of a gear motor have significant implications for its suitability in different tasks. The voltage rating determines compatibility with the power supply and ensures electrical safety, while the power rating influences load capacity, speed, torque, efficiency, and thermal considerations. When choosing a gear motor, it is crucial to carefully evaluate the task requirements and consider the voltage and power rating in relation to factors such as torque, speed, power supply availability, and environmental conditions.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China manufacturer CHINAMFG MD016016-64 117rpm 5kg. Cm High Torque Low Rpm 16mm 12V Stepper DC Gear Motor   vacuum pump oil	China manufacturer CHINAMFG MD016016-64 117rpm 5kg. Cm High Torque Low Rpm 16mm 12V Stepper DC Gear Motor   vacuum pump oil
editor by CX 2024-05-16

China wholesaler High Torque 12V 24V Mini Low Rpm Brush DC Electric Worm Gear Motor for Robot Price DC Worm Geared Motor vacuum pump oil

Product Description

12v 24v dc brushless motor 10w 15w 30w 50w 100w 150w brushless dc motor

1.Features

1) Step Angle  Accuracy: ±5%
2) Resistance Accuracy: ±10%
3) Inductance Accuracy: ±20%
4) Temperature Rise: 80°C Max
5) Ambient Temperature: -20°C~+50°C
6) Insulation Resistance: 100MΩ Min., 500VDC
7) Dielectric Strength:  500VAC for 1 minute
8) Shaft Radial Play:  0.02Max (450g-load)
9) Shaft Axial Play: 0.08Max (450g-load)

2.Related Specifications

1) 42mm series

Model DMW421 DMW422 DMW423
Voltage V 24
No load speed rpm 5000 5000 5000
Rated torque Nm 0.063 0.094 0.125
Rated Speed rpm 4000 4000 4000
Rated Current A 1.7 2.5 3.5
Torque(max) Nm 0.19 0.27 0.38
Back-EMF constant V/Krpm 3.13 3.13 3.15
Torque Constant Nm/A 0.039 0.04 0.04
Resistance ohm 1.5 0.53 0.74
Weight Kg 0.3 0.4 0.5
Length mm 41 51 6

2) 70mmSeries

Model Rated Voltage No load
speed
Rated torque Rated Speed Rated
Current
Rated
power
     L
VDC RPM Nm rpm A W mm
DMW701 48 3500 0.5 3000 4.3 157 86
DMW702 48 3500 1 3000 8.7 314 116
DMW703 48 3500 1.5 3000 12.9 471 136

3) 80mmSeries

Model DMW801 DMW802 DMW803
Voltage V 24
No load speed rpm 4200 4200 4200
Rated torque Nm 0.25 0.5 0.75
Rated Speed rpm 3000 3000 3000
Rated Current A 5.2 10.5 15
Rated power W 79 157 236
Back-EMF constant V/Krpm 9 9.2 9.5
Torque Constant Nm/A 0.06 0.052 0.05
Resistance ohm 0.5 0.43 0.35
Weight Kg 1.6 2.2 3
Length mm 75 95 115

4) 86mmSeries

Model DMW861 DMW862 DMW863
Voltage V 48
No load speed rpm 3500 3500 3400
Rated torque Nm 1.0 1.8 2.5
Rated Speed rpm 3000 3000 3000
Rated Current A  8.6 14.8 20
Torque(max) Nm 3.0 5.4 7.5
Back-EMF constant V/Krpm 9.8 9.8 10
Torque Constant Nm/A 0.13 0.13 0.14
Resistance ohm 0.32 0.15 0.1
Weight Kg 2.2 3.2 4.2
Length mm 80 105 130

5) 60mmSeries

Model DMW601 DMW602 DMW603
Voltage V 36
No load speed rpm 4100 4100 4100
Rated torque Nm 0.25 0.5 0.75
Rated Speed rpm 3000 3000 3000
Rated Current A 3 6 9
Torque(max) Nm 0.75 1.5 2
Back-EMF constant V/Krpm 6.2 6.5 6.5
Torque Constant Nm/A 0.043 0.045 0.041
Resistance ohm 0.59 0.26 0.2
Weight Kg 0.9 1.2 1.6
Length mm 78 99 120

6) 57mm Series

Model DMW571 DMW572 DMW573 DMW574
Voltage V 36
No load speed rpm 5200 5200 5300 5400
Rated torque Nm 0.11 0.22 0.32 0.42
Rated Speed rpm 4000 4000 4000 4000
Rated Current A 1.8 3.2 4.7 6.5
Torque(max) Nm 0.3 0.5 0.8 1.2
Back-EMF constant V/Krpm 4.5 4.8 4.83 4.9
Torque Constant Nm/A 0.072 0.078 0.08 0.09
Resistance ohm 1.7 0.75 0.5 0.39
Weight Kg 0.45 0.8 1.1 1.4
Length mm 55 75 95 115

7) 57 High Torque

Model DMW571 DMW572 DMW573 DMW574
Voltage V 36
No load speed rpm 5200 5200 5200 5200
Rated torque Nm 0.14 0.28 0.43 0.49
Rated Speed rpm 4000 4000 4000 4000
Rated Current A 2.2 4.5 6.8 7.9
Torque(max) Nm 0.4 0.6 0.9 1.5
Back-EMF constant V/Krpm 4.5 4.8 4.83 4.9
Torque Constant Nm/A 0.072 0.078 0.08 0.09
Resistance ohm 2 0.9 0.7 0.5
Weight Kg 0.5 0.9 1.3 1.8
Length mm 55 75 95 115

3.Outlines/Drawings

4.About US

5.Main Products

HangZhou Shnmotor is a developing manufacturing and trading company which aims at the electrical products of refrigeration market.
We have a highly qualified team, which has over 8 years experience on Machinery designing, manufacturing, managing and customer service concept heart & soul.
ISO 9000 standard and 6S management guarantee the most effective quality control on every part and every process of the products. 

Our Main Products as below:
1)Brushless DC Motor
2)Setpping Motor 
3)AC Motor
4)Motor Group
(Motor+Reducer+Driver+Brake)

6.Application

Package and Shipping

1.FedEX / DHL / UPS / TNT for samples,Door to door service;
2.By sea for batch goods;
3.Customs specifying freight forwarders or negotiable shipping methods;
4.Delivery Time:20-25 Days for samples;30-35 Days for batch goods;
5.Payment Terms:T/T,L/C at sight,D/P etc.

FAQ
Q1. When can I get the quotation?
We usually quote within 24 hours after we get your inquiry. If you are urgent to get the price, please send the message on  and  or call us directly.

Q2. How can I get a sample to check your quality?
After price confirmed, you can requiry for samples to check quality.
If you need the samples, we will charge for the sample cost. But the sample cost can be refundable when your quantity of first order is above the MOQ

Q3. Can you do OEM for us?
Yes, the product packing can be designed as you want.

Q4. How about MOQ?
1 pcs for carton box.

Q5. What is your main market?
Eastern Europe, Southeast Asia, South America.

 
Please feel  free to contact us if you have any question.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China wholesaler High Torque 12V 24V Mini Low Rpm Brush DC Electric Worm Gear Motor for Robot Price DC Worm Geared Motor   vacuum pump oil	China wholesaler High Torque 12V 24V Mini Low Rpm Brush DC Electric Worm Gear Motor for Robot Price DC Worm Geared Motor   vacuum pump oil
editor by CX 2024-02-29

China manufacturer 76mm High Torque Low Rpm 12V 24V DC Electric Motor with Metal Worm Gear vacuum pump engine

Product Description

76mm High Torque Low Rpm 12V 24V Dc Electric Motor with Metal Worm Gear

Model:D76L-24v120w-50rpm
 

Main characteristic
Motor Type 12v 24v metal worm gear motor 
Motor Power 50w 100w 150w 200w 250w 350w
Voltage 12V,24V, 36v, 48v,72v,110v
Output speed 60-350rpm
Gear ratio 75:1 60:1 60:3 60:4
Gear Modulus 75:1 M=0.8
60:1 60:3 60:4 M=1
Torque 3-30N.M
Motor length 77mm, 85mm, 97mm
Material of Gear  Plastic  / Bronze
Speed Sensor  Hall sensor ,encoder ,opto sensor 
Usage  Rolling garage door ,automatic sliding door , sliding gate, electric wheelchair,vending  machine ,coffee machine, industrial machine ,electric hydraulic pump,electric forklift ,oil pump ,water pump,other electric tools.

 Products Type
 
Voltage 
 
 Power
 
 No Load
 
 Load
 
 Gear ratio
 
Motor length 
 
V
 
 W
 
 Speed
 
Current 
 
 Speed
 
Current 
 
Torque 
 
RPM
 
A
 
RPM
 
A
 
N.M
 
mm
 
 D76L -2445-150
 
 24
 
 45
 
 150±5
 
 ≤1.0
 
 130±5
 
 ≤3.5
 
 ≥3.3
 
 1:20
 
 77
 
 D76L -2445-180
 
 24
 
45
 
 180±5
 
 ≤1.2
 
 150±5
 
 ≤4.5
 
 ≥4.5
 
 1:20
 
 77
 
 D76L -2445-210
 
 24
 
45
 
 210±5
 
 ≤1.5
 
 180±5
 
 ≤6.5
 
 ≥6.0
 
 1:20
 
 77
 
 D76L -2465-150
 
 24
 
 65
 
 150±5
 
 ≤1.0
 
 130±5
 
 ≤3.5
 
 ≥3.3
 
 1:20
 
 85
 
 D76L -2465-180
 
 24
 
 65
 
 180±5
 
 ≤1.2
 
 150±5
 
 ≤4.5
 
 ≥4.5
 
 1:20
 
 85
 
 D76L -2465-210
 
 24
 
 65
 
 210±5
 
 ≤1.5
 
 180±5
 
 ≤6.5
 
 ≥6.0
 
 1:20
 
 85
 
 D76L -2495-150
 
 24
 
 95
 
 150±5
 
 ≤1.0
 
 130±5
 
 ≤3.5
 
 ≥3.3
 
 1:20
 
 97
 
 D76L -2495-180
 
 24
 
 95
 
 180±5
 
 ≤1.2
 
 150±5
 
 ≤4.5
 
 ≥4.5
 
 1:20
 
 97
 
 D76L -2495-210
 
 24
 
 95
 
 210±5
 
 ≤1.5
 
 180±5
 
 ≤6.5
 
 ≥6.0
 
 1:20
 
 97
 

FAQ:

Q: Are you trading company or manufacturer ?

A: We are Integration of industry and trade, with over 20 years experience in DC worm gear motor. Our company have accumulated skilled production line, complete management and powerful research support, which could match all of the customers’ requirements and make them satisfaction.
 

Q: What is your main product?

DC Motor: Gear motor and Micro motor without gear box
-Welding equipment: Wire feeder, Welding rod, Welding Torch, Earth clamp, Electrode holder, and Rectifier
 

Q: What if I don’t know which DC motor I need?

A: Don’t worry, Send as much information as you can, our team will help you find the right 1 you are looking for.
 

Q:Can I get same samples?

A:  It depends. If only a few samples for personal use or replacement, I am afraid it will be difficult for us to provide, because all of our motors are custom made and no stock available if there is no further needs. If just sample testing before the official order and our MOQ, price and other terms are acceptable, we’d love to provide samples.
 

Q:Is there a MOQ for your motors?

A: Yes. The MOQ is between 1000~10,000pcs for different models after sample approval.
But it’s also okay for us to accept smaller lots like a few dozens, hundreds or thousands
For the initial 3 orders after sample approval.For samples, there is no MOQ requirement. But the less the better (like no more than 5pcs) on condition that the quantity is enough in case any changes needed after initial testing.

Q: How long is your delivery time?
A: Usually it takes about 35 days if you accept our standard output shaft.If the output shaft is customized,the production time depends on what the customization shaft it is.

HangZhou CHINAMFG Science & Technology Co.,Ltd is a professional company specialized in design and customization of small dc worm gear motor. The motor models mainly include D49 D59 D63 D76 D88 series, and all the motors can be installed with hall sensor, encoder, opto sensor and brake,so we accept OEM and ODM orders ,and manufacture the motor according to your required like voltage, power, speed, torque, dimension and motor direction.

Our boss is a doctor of dc gear motor with over 20 years experience in motor customization and production,we also has professional R & D team and testing centers to test gears and motors, and could guaranteed high quality products for customers,welcome to contact our customer service center.

Our main market:

Europe,America and Asia,including United Kingdom, Germany, Italy, France, Sweden, United State, India,Korea and so on.

Company Advantages:

1.Professional motor OEM & ODM manufacturer
 

2.20 years motor design experience

3.Experienced engineering designers

4.Fast delivery time,about 15-20 days if use our conventional output shaft

5.We have strict quality control system,each batch of goods will be tested for torque and noise before leaving the factory

More Applications:Car simulator ,garage door opener ,gate operator, vending machine ,coffee machine ,industrial automatic machine ,oil pump,water pump,packing barrier,water pump ,floor polisher,truck lift,stair lift,hospital bed ,hydraulic pump electric forklift.

Package

Certifications

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Automatic Lifting Equipment
Operating Speed: Low Speed
Excitation Mode: Permanent Magnet
Samples:
US$ 150/Piece
1 Piece(Min.Order)

|

Order Sample

Sample fee will be returned when order reaches 200
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

dc motor

How does the speed control of a DC motor work, and what methods are commonly employed?

The speed control of a DC (Direct Current) motor is essential for achieving precise control over its rotational speed. Various methods can be employed to regulate the speed of a DC motor, depending on the specific application requirements. Here’s a detailed explanation of how speed control of a DC motor works and the commonly employed methods:

1. Voltage Control:

One of the simplest methods to control the speed of a DC motor is by varying the applied voltage. By adjusting the voltage supplied to the motor, the electromotive force (EMF) induced in the armature windings can be controlled. According to the principle of electromagnetic induction, the speed of the motor is inversely proportional to the applied voltage. Therefore, reducing the voltage decreases the speed, while increasing the voltage increases the speed. This method is commonly used in applications where a simple and inexpensive speed control mechanism is required.

2. Armature Resistance Control:

Another method to control the speed of a DC motor is by varying the armature resistance. By inserting an external resistance in series with the armature windings, the total resistance in the circuit increases. This increase in resistance reduces the armature current, thereby reducing the motor’s speed. Conversely, reducing the resistance increases the armature current and the motor’s speed. However, this method results in significant power loss and reduced motor efficiency due to the dissipation of excess energy as heat in the external resistance.

3. Field Flux Control:

Speed control can also be achieved by controlling the magnetic field strength of the motor’s stator. By altering the field flux, the interaction between the armature current and the magnetic field changes, affecting the motor’s speed. This method can be accomplished by adjusting the field current through the field windings using a field rheostat or by employing a separate power supply for the field windings. By increasing or decreasing the field flux, the speed of the motor can be adjusted accordingly. This method offers good speed regulation and efficiency but requires additional control circuitry.

4. Pulse Width Modulation (PWM):

Pulse Width Modulation is a widely used technique for speed control in DC motors. It involves rapidly switching the applied voltage on and off at a high frequency. The duty cycle, which represents the percentage of time the voltage is on, is varied to control the effective voltage applied to the motor. By adjusting the duty cycle, the average voltage across the motor is modified, thereby controlling its speed. PWM provides precise speed control, high efficiency, and low power dissipation. It is commonly employed in applications such as robotics, industrial automation, and electric vehicles.

5. Closed-Loop Control:

In closed-loop control systems, feedback from the motor’s speed or other relevant parameters is used to regulate the speed. Sensors such as encoders or tachometers measure the motor’s actual speed, which is compared to the desired speed. The difference, known as the error signal, is fed into a control algorithm that adjusts the motor’s input voltage or other control parameters to minimize the error and maintain the desired speed. Closed-loop control provides excellent speed regulation and accuracy, making it suitable for applications that require precise speed control, such as robotics and CNC machines.

These methods of speed control provide flexibility and adaptability to various applications, allowing DC motors to be effectively utilized in a wide range of industries and systems.

dc motor

Can DC motors be used in renewable energy systems, such as wind turbines or solar tracking systems?

Yes, DC (Direct Current) motors can be effectively used in various renewable energy systems, including wind turbines and solar tracking systems. The unique characteristics and advantages of DC motors make them well-suited for these applications. Here’s a detailed explanation of how DC motors can be utilized in renewable energy systems:

1. Wind Turbines:

DC motors can be employed in wind turbines to convert the mechanical energy of the wind into electrical energy. There are two common configurations:

a. Direct Drive Wind Turbines:

In direct drive wind turbines, the rotor of the turbine is directly connected to a DC generator. The rotor’s rotational motion is transmitted directly to the generator, which produces DC electrical power. DC motors can be used as DC generators in this configuration. The advantage of using DC motors/generators is their simplicity, reliability, and ability to operate efficiently at variable speeds, which is beneficial in varying wind conditions.

b. Hybrid Wind Turbines:

Hybrid wind turbines combine both aerodynamic and electrical conversion systems. In this configuration, DC motors can be utilized for the pitch control mechanism and yaw control system. The pitch control mechanism adjusts the angle of the turbine blades to optimize performance, while the yaw control system enables the turbine to align itself with the wind direction. DC motors provide precise control and responsiveness required for these functions.

2. Solar Tracking Systems:

DC motors are commonly employed in solar tracking systems to maximize the efficiency of solar panels by optimizing their orientation towards the sun. There are two main types of solar tracking systems:

a. Single-Axis Solar Tracking Systems:

Single-axis solar tracking systems adjust the inclination of solar panels along a single axis (typically the east-west axis) to track the movement of the sun throughout the day. DC motors can be used to drive the rotation mechanism that adjusts the panel’s tilt angle. By continuously adjusting the panel’s position to face the sun directly, the solar energy harvested can be significantly increased, resulting in higher energy output compared to fixed solar panel installations.

b. Dual-Axis Solar Tracking Systems:

Dual-axis solar tracking systems adjust the inclination of solar panels along both the east-west and north-south axes to track the sun’s movement throughout the day and throughout the year. DC motors are utilized in the rotation mechanisms for both axes. This type of solar tracking system provides the highest possible energy yield by keeping the solar panels perpendicular to the sun’s rays at all times, maximizing the exposure to sunlight.

DC motors are preferred in renewable energy systems due to their advantages, including:

  • Efficiency at Variable Speeds: DC motors can operate efficiently at varying speeds, making them suitable for applications with fluctuating wind speeds or changing solar angles.
  • Control and Precision: DC motors offer precise control and responsiveness, allowing for accurate tracking and adjustment in wind turbines and solar tracking systems.
  • Reliability: DC motors are known for their reliability, with fewer moving parts compared to other motor types, reducing the risk of failure in remote or harsh environments.
  • Compatibility with Energy Storage Systems: DC motors can easily be integrated with energy storage systems, such as batteries or supercapacitors, to store excess electrical energy generated by wind turbines or solar panels.

In conclusion, DC motors can be effectively utilized in renewable energy systems such as wind turbines and solar tracking systems. Their efficiency, control capabilities, reliability, and compatibility with energy storage systems make them a suitable choice for these applications, contributing to the advancement of sustainable energy generation.

dc motor

Can DC motors be used in robotics, and if so, what are some notable applications?

Yes, DC (Direct Current) motors can be used in robotics, and they are widely employed in various robotic applications. DC motors offer several advantages that make them suitable for robotic systems, including their controllability, compact size, and versatility. Here’s a detailed explanation of how DC motors are used in robotics and some notable applications:

DC Motors in Robotics:

DC motors are commonly used in robotics due to their ability to provide precise speed control and torque output. They can be easily controlled by adjusting the voltage applied to the motor, allowing for accurate and responsive motion control in robotic systems. Additionally, DC motors can be designed in compact sizes, making them suitable for applications with limited space and weight constraints.

There are two main types of DC motors used in robotics:

  1. DC Brushed Motors: These motors have a commutator and carbon brushes that provide the electrical connection to the rotating armature. They are relatively simple in design and cost-effective. However, they may require maintenance due to brush wear.
  2. DC Brushless Motors: These motors use electronic commutation instead of brushes, resulting in improved reliability and reduced maintenance requirements. They are often more efficient and offer higher power density compared to brushed motors.

Notable Applications of DC Motors in Robotics:

DC motors find applications in various robotic systems across different industries. Here are some notable examples:

1. Robotic Manipulators: DC motors are commonly used in robotic arms and manipulators to control the movement of joints and end-effectors. They provide precise control over position, speed, and torque, allowing robots to perform tasks such as pick-and-place operations, assembly, and material handling in industrial automation, manufacturing, and logistics.

2. Mobile Robots: DC motors are extensively utilized in mobile robots, including autonomous vehicles, drones, and rovers. They power the wheels or propellers, enabling the robot to navigate and move in different environments. DC motors with high torque output are particularly useful for off-road or rugged terrain applications.

3. Humanoid Robots: DC motors play a critical role in humanoid robots, which aim to replicate human-like movements and capabilities. They are employed in various joints, including those of the head, arms, legs, and hands, allowing humanoid robots to perform complex movements and tasks such as walking, grasping objects, and facial expressions.

4. Robotic Exoskeletons: DC motors are used in robotic exoskeletons, which are wearable devices designed to enhance human strength and mobility. They provide the necessary actuation and power for assisting or augmenting human movements, such as walking, lifting heavy objects, and rehabilitation purposes.

5. Educational Robotics: DC motors are popular in educational robotics platforms and kits, including those used in schools, universities, and hobbyist projects. They provide a cost-effective and accessible way for students and enthusiasts to learn about robotics, programming, and control systems.

6. Precision Robotics: DC motors with high-precision control are employed in applications that require precise positioning and motion control, such as robotic surgery systems, laboratory automation, and 3D printing. The ability of DC motors to achieve accurate and repeatable movements makes them suitable for tasks that demand high levels of precision.

These are just a few examples of how DC motors are used in robotics. The flexibility, controllability, and compactness of DC motors make them a popular choice in a wide range of robotic applications, contributing to the advancement of automation, exploration, healthcare, and other industries.

China manufacturer 76mm High Torque Low Rpm 12V 24V DC Electric Motor with Metal Worm Gear   vacuum pump engine	China manufacturer 76mm High Torque Low Rpm 12V 24V DC Electric Motor with Metal Worm Gear   vacuum pump engine
editor by CX 2024-02-15

China Custom Planetary Gearbox 12V Electric DC Gear Motor High Torque Low Rpm Motors for Robots wholesaler

Product Description

24ZYJ DC Worm Gear Motor
Basic Info
Item Data
Tem Rise 40K
Working Tem (-20ºC~+80ºC)
Insulation Resistance 100MΩ min  500VDC
Surge Test 500VAC for 1min
Insulation Class E
Weight 120g

 

 

The specification of DC Electrical Worm Gear Reducer Motor with high torque

Specification
PN Rated Voltage Initial Speed Ratio Power Noload Speed Noload Current Rated Speed Rated Current Rated Torque Stall Torque Stall Current
V DC rpm 1:xxx W rpm mA rpm mA Kg.cm Kg.cm mA
24ZYJ4632-65A 12 6500 100 3 65 80 50 200 0.75 2 1000
24ZYJ4632-28A 12 5000 180 3 28 80 23 200 1.6 3 1000
24ZYJ4632-38A 12 9500 250 3 38 100 33 250 2.6 5 1500

 

 

The drawing of DC Electrical Worm Gear Reducer Motor with high torque


Below are only some typical models, for more specification or a customed motor, pls contact us.

About our company
Probond motors designs brush, brushless, stepper, hysteresis and linear motors to meet customers requirements.

Our motors use standard and special components with customer selected torque/speed requirements that can be modified to your applications.

The AC/DC gear motors are based upon to distinct magetic circuits that optimize motor design for high speed low torque and low speed high torque.

These motors give you lower rotational losses, excellent thermal transfer, interchangeable end caps, easily sealed. Options include connectors, encoders, shaft modifications, dimensional changes, etc.

Probond motor owns professional sales team and engineer team with more than 10 years experience in motor industry, based on China mainland handling overseas business for years, we know your needs better than others.

Probond Sonicare Toothbrush Motor and Thermostatic Valve Hysteresis Motor are our hot products on sell in 2017 with highly quality level and competitive price.

Please kindly contact us to get a catalogue.

Terms of Trade

Terms of price FOB,CIF,CFR,EXW,DDP,etc.
Terms of payment 100% T/T in advance for samples
Bulk quantity payment way can be negotited
Warranty 12 months limited warranty once the items are delivered to the buyer.
Lead time Usually within 2 weeks for trial orders, within 3 weeks for bulk orders.
Package Carton o plywood pallet.
Place of loading ZheJiang , HangZhou, etc.
Shipment carrier Items are usually shipped via Fedex,DHL, TNT,UPS,EMS
for trial orders and via vessel for bulk orders.
Delivery time Usually within 5 working days by Express                         15-30 working days by vessel

Our promise to our Customers:
1.  Answer customer’s inquiry within 2 working days.
2.  Reply to our customer questions & Concerns within 3 working days.
3.  Acknowledge Customer purchase orders within 24 hours.

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Beauty Equipments
Operating Speed: High Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Open Type
Number of Poles: 6
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

Dynamic Modeling of a Planetary Motor

A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.

planetary gear system

A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.

planetary gear train

To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?

planetary gear train with fixed carrier train ratio

The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!

planetary gear train with spur gears

A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
Motor

planetary gear train with helical gears

A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.

China Custom Planetary Gearbox 12V Electric DC Gear Motor High Torque Low Rpm Motors for Robots   wholesaler China Custom Planetary Gearbox 12V Electric DC Gear Motor High Torque Low Rpm Motors for Robots   wholesaler
editor by CX 2023-04-25

China 12v 24v high torque low rpm brushless dc geared motor brushless motor

Warranty: 3years
Product Variety: bldc equipment motor GMP36-TEC3650
Use: BOAT, Car, Electric powered Bicycle, Other
Sort: Gear MOTOR
Torque: .24-30kg.cm
Development: Everlasting Magnet
Commutation: Brushless
Defend Characteristic: Other
Pace(RPM): 4-1600rpm
Constant Existing(A): .03-.045 A
Efficiency: Other
Dimensions: 36*ninety seven.5mm
Product Title: DC brushless geared Motor GMP36-TEC3650
No-load pace: 5-1650 rpm
No-load current: 80mA-250mA
Rated torque: .7-30kg.cm
Output electricity: 7-11W
Stall torque: 60kg.cm
Stall recent: 2.4A-4.0A
Rated voltage: 12VDC-24VDC
Application: Automated Product
Packaging Particulars: dc gear motor gmp36-tec3650 45pcs for each outer carton
Port: HangZhouG

12v 24v higher torque lower rpm brushless dc geared motorPrimary Characteristics36mm Planetary reducer in addition TEC3650&3640 brushless motorSmall dimensions dc gear motor with low velocity and large torque36mm equipment motor give 3.0Nm torque max and far more reliableSuitable to tiny diameter, minimal noise and large torque software Reduction ratio:4、14、19、27、51、71、100、139、189、264、369、516、720

Model:GMP36-TEC3650
TEC3650-2465Rated voltage: 24VDCRated pace:5400r/minOutput electricity:eleven.5W
No-load pace:6500r/minRated torque:200g.cmStall torque:1150g.cm
No-load recent:200mARated existing:1000mAStall existing:2.0A
TEC3650-2440Rated voltage: 24VDCRated pace:3200r/minOutput energy:6.6W
No-load speed:4000r/minRated torque:200g.cmStall torque:1000g.cm
No-load current:120mARated current:600mAStall recent:2.0A
TEC3650-1245Rated voltage: 12VDCRated velocity:3500r/minOutput energy:8.3W
No-load pace:4500r/minRated torque:230g.cmStall torque:820g.cm
No-load present:150mARated recent:880mAStall existing:2.5A
GMP36-TEC3650-2440
Reduction ratio419fifty oneone hundred139189264369516
Length mm2633.five40.fiveforty.five40.fiveforty seven.547.547.fiveforty seven.5
No-load speed rpm950200seventy fiveforty28twenty1510seven.5
Rated velocity rpm750one hundred sixtysixty302216128six
Rated torque kg.cm.6two.seven6.12sixteen.622.5thirtythirty30
Max.momentary tolerance torque kg.cm3.2thirteen31sixty7070707070
GMP36-TEC3650-2465
Reduction ratio41951100139189264369516
Length mm2633.five40.5forty.fiveforty.5forty seven.5forty seven.fiveforty seven.547.5
No-load pace rpm1600340one hundred twenty five65forty five332317twelve
Rated velocity rpm1300280one hundred53382820fourteen.512
Rated torque kg.cm.sixtwo.7six.twelvesixteen.six22.five303030
Max.momentary tolerance torque kg.cmthree.71535sixty nine7070707070
GMP36-TEC3650-1245-x
Reduction ratio41951a hundred139189264369516
Duration mm2633.540.five40.540.fiveforty seven.fiveforty seven.547.547.5
No-load pace rpm1050230eighty five443223seventeen129
Rated pace rpm875185sixty eight3525eighteenthirteenten57
Rated torque kg.cm.7three.7.1419243030thirty
Max.momentary tolerance torque kg.cm2.6eleventwenty five507070707070
Item Application.Automated doorway operators, automated vitality saving bath, electrical managed valve, robots, grass cutter, electric curtain, digicam, health care service, oxygen equipment, 10KG Technical Aluminum Barbell With Screw Collar Health Bodybuilding Barbell Bar and so forth.
Others application
Business MachinesVending MachinesPrintersATMCopiers and Scanners
Camera and OpticalVideoCamerasProjectors
Lawn and GardenLawn MowersSnow BlowersTrimmersLeaf Blowers
Certifications.ISO9001, SGS, Nationwide large-tech enterprises, and so on. Our CompanyTT Motor (HK) Industrial Co., Ltd. has been specializing in micro motors, equipment motors and their respective parts given that 2000.Our merchandise are widely used in enjoyment systems, automobiles, house and industrial appliances and tools and a lot of other folks. Our items are dependable and lengthy-long lasting, and backed by years of experience. We export ninety eight% of our output throughout the world. By leveraging our tough-gained popularity for honesty, dependability and quality, TT aims to continue as a pioneer in the salesoverseas by in search of worldwide companions. If your company is an finish-person of micro-motors, a distributor or an agent, remember to speak to us.We look ahead to becoming CZPT to work collectively with you in the near future. Our BuyersNIKE, FLEXTRONICS, STANLEY, Electrical Motor Long Shaft 4 Rotor Eccentric and so on. Packing & DeliveryStandard packing Transport time:DHL: 3-5 working times UPS: 5-7 doing work times TNT: 5-7 functioning days FedEx: 7-9 doing work times EMS: 12-15 doing work times ChinaPost: Is dependent on ship to which region Sea: Is dependent on ship to which region Our Consumer FeedbackExcellent high quality, better value, excellent service, and on time delivery. FAQQ: How to order?A: send out us inquiry → acquire our quotation → negotiate information → validate the sample → indicator deal/deposit → 12 inch Plastic Locking Collar Plastic Shaft Collar mass production →cargo all set → equilibrium/shipping → more cooperationQ: How about Sample order?A: Sample is accessible for you. please speak to us for details. After we demand you sample price, please feel straightforward, it would be refundwhen you location formal get.Q: Which shipping and delivery way is offered?A: DHL, UPS, FedEx, TNT, EMS, China Post,Sea are accessible.The other delivery ways are also accessible, please make contact with us if youneed ship by the other shipping way. Q: How long is the deliver[Making] and transport?A: Supply time is dependent on the amount you buy. normally it normally takes 15-twenty five functioning times.Q: My bundle has lacking items. What can I do?A: Please make contact with our assistance staff and we will validate your get with the package contents.We apologize for any inconveniences. Q: How to validate the payment?A: We take payment by T/T, PayPal, the other payment ways also could be accepted, Factory Custom made CNC Machining 6061 7075 Aluminum Alloy Shaft Collar You should get in touch with us before you spend by the other payment techniques. Also thirty-fifty% deposit is obtainable, the balance money should be compensated just before delivery.

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
Motor

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China 12v 24v high torque low rpm brushless dc geared motor     brushless motor	China 12v 24v high torque low rpm brushless dc geared motor     brushless motor
editor by czh2023-02-15

China 12V DC Gear Motor High Torque Low Rpm Planetary motor engine

Solution Description

12V DC Gear Motor Large Torque Minimal Rpm Planetary

DC Planetary Geared motor

Vdc:12VDC    24VDC        Diameter:45mm
Output Velocity:1.6~1925RPM
Route of rotation:CW,CCW
Equipment Ratio: 4~2418

Application: electrical controlled valve,robotic,vehicle curtain,automatic door,computerized unbrella.

Vending equipment,and many others…

Company Introduction

 

US $12.8-15
/ Piece
|
1 Piece

(Min. Order)

###

Type: DC Motor
Certification: RoHS
Output Speed: 0.5rpm-1800rpm
Gears: Plastic.Metal Powder Metallurgy
Gearing Arrangement: Spur
Voltage: 12V

###

Customization:
US $12.8-15
/ Piece
|
1 Piece

(Min. Order)

###

Type: DC Motor
Certification: RoHS
Output Speed: 0.5rpm-1800rpm
Gears: Plastic.Metal Powder Metallurgy
Gearing Arrangement: Spur
Voltage: 12V

###

Customization:

Benefits of a Planetary Motor

A planetary motor has many benefits. Its compact design and low noise makes it a good choice for any application. Among its many uses, planetary gear motors are found in smart cars, consumer electronics, intelligent robots, communication equipment, and medical technology. They can even be found in smart homes! Read on to discover the benefits of a planetary gear motor. You’ll be amazed at how versatile and useful it is!
Motor

Self-centering planet gears ensure a symmetrical force distribution

A planetary motor is a machine with multiple, interlocking planetary gears. The output torque is inversely proportional to the diameters of the planets, and the transmission size has no bearing on the output torque. A torsional stress analysis of the retaining structure for this type of motor found a maximum shear stress of 64 MPa, which is equivalent to a safety factor of 3.1 for 6061 aluminum. Self-centering planet gears are designed to ensure a symmetrical force distribution throughout the transmission system, with the weakest component being the pinions.
A planetary gearbox consists of ring and sun gears. The pitch diameters of ring and planet gears are nearly equal. The number of teeth on these gears determines the average gear-ratio per output revolution. This error is related to the manufacturing precision of the gears. The effect of this error is a noise or vibration characteristic of the planetary gearbox.
Another design for a planetary gearbox is a traction-based variant. This design eliminates the need for timing marks and other restrictive assembly conditions. The design of the ring gear is similar to that of a pencil sharpener mechanism. The ring gear is stationary while planet gears extend into cylindrical cutters. When placed on the sun’s axis, the pencil sharpening mechanism revolves around the ring gear to sharpen the pencil.
The JDS eliminates the need for conventional planetary carriers and is mated with the self-centering planet gears by dual-function components. The dual-function components synchronize the rolling motion and traction of the gears. They also eliminate the need for a carrier and reduce the force distribution between the rotor and stator.

Metal gears

A planetary motor is a type of electric drive that uses a series of metal gears. These gears share a load attached to the output shaft to generate torque. The planetary motor is often CNC controlled, with extra-long shafts, which allow it to fit into very compact designs. These gears are available in sizes from seven millimeters to 12 millimeters. They can also be fitted with encoders.
Planetary gearing is widely used in various industrial applications, including automobile transmissions, off-road transmissions, and wheel drive motors. They are also used in bicycles to power the shift mechanism. Another use for planetary gearing is as a powertrain between an internal combustion engine and an electric motor. They are also used in forestry applications, such as debarking equipment and sawing. They can be used in other industries as well, such as pulp washers and asphalt mixers.
Planetary gear sets are composed of three types of gears: a sun gear, planet gears, and an outer ring. The sun gear transfers torque to the planet gears, and the planet gears mesh with the outer ring gear. Planet carriers are designed to deliver high-torque output at low speeds. These gears are mounted on carriers that are moved around the ring gear. The planet gears mesh with the ring gears, and the sun gear is mounted on a moveable carrier.
Plastic planetary gear motors are less expensive to produce than their metal counterparts. However, plastic gears suffer from reduced strength, rigidity, and load capacity. Metal gears are generally easier to manufacture and have less backlash. Plastic planetary gear motor bodies are also lighter and less noisy. Some of the largest plastic planetary gear motors are made in collaboration with leading suppliers. When buying a plastic planetary gear motor, be sure to consider what materials it is made of.
Motor

Encoder

The Mega Torque Planetary Encoder DC Geared Motor is designed with a Japanese Mabuchi motor RS-775WC, a 200 RPM base motor. It is capable of achieving stall torque at low speeds, which is impossible to achieve with a simple DC motor. The planetary encoder provides five pulses per revolution, making it perfect for applications requiring precise torque or position. This motor requires an 8mm hex coupling for proper use.
This encoder has a high resolution and is suitable for ZGX38REE, ZGX45RGG and ZGX50RHH. It features a magnetic disc and poles and an optical disc to feed back signals. It can count paulses as the motor passes through a hall on the circuit board. Depending on the gearbox ratio, the encoder can provide up to two million transitions per rotation.
The planetary gear motor uses a planetary gear system to distribute torque in synchrony. This minimizes the risk of gear failure and increases the overall output capacity of the device. On the other hand, a spur gear motor is a simpler design and cheaper to produce. The spur gear motor works better for lower torque applications as each gear bears all the load. As such, the torque capacity of the spur gear motor is lower than that of a planetary gear motor.
The REV UltraPlanetary gearbox is designed for FTC and has three different output shaft options. The output shaft is made of 3/8-inch hex, allowing for flexible shaft replacement. These motors are a great value as they can be used to meet a wide range of power requirements. The REV UltraPlanetary gearbox and motor are available for very reasonable prices and a female 5mm hex output shaft can be used.

Durability

One of the most common questions when selecting a planetary motor is “How durable is it?” This is a question that’s often asked by people. The good news is that planetary motors are extremely durable and can last for a long time if properly maintained. For more information, read on! This article will cover the durability and efficiency of planetary gearmotors and how you can choose the best one for your needs.
First and foremost, planetary gear sets are made from metal materials. This increases their lifespan. The planetary gear set is typically made of metals such as nickel-steel and steel. Some planetary gear motors use plastic. Steel-cut gears are the most durable and suitable for applications that require more torque. Nickel-steel gears are less durable, but are better able to hold lubricant.
Durability of planetary motor gearbox is important for applications requiring high torque versus speed. VEX VersaPlanetary gearboxes are designed for FRC(r) use and are incredibly durable. They are expensive, but they are highly customizable. The planetary gearbox can be removed for maintenance and replacement if necessary. Parts for the gearbox can be purchased separately. VEX VersaPlanetary gearboxes also feature a pinion clamped onto the motor shaft.
Dynamic modeling of the planetary gear transmission system is important for understanding its durability. In previous studies, uncoupled and coupled meshing models were used to investigate the effect of various design parameters on the vibration characteristics of the planetary gear system. This analysis requires considering the role of the mesh stiffness, structure stiffness, and moment of inertia. Moreover, dynamic models for planetary gear transmission require modeling the influence of multiple parameters, such as mesh stiffness and shaft location.
Motor

Cost

The planetary gear motor has multiple contact points that help the rotor rotate at different speeds and torques. This design is often used in stirrers and large vats of liquid. This type of motor has a low initial cost and is more commonly found in low-torque applications. A planetary gear motor has multiple contact points and is more effective for applications requiring high torque. Gear motors are often found in stirring mechanisms and conveyor belts.
A planetary gearmotor is typically made from four mechanically linked rotors. They can be used for various applications, including automotive and laboratory automation. The plastic input stage gears reduce noise at higher speeds. Steel gears can be used for high torques and a modified lubricant is often added to reduce weight and mass moment of inertia. Its low-cost design makes it an excellent choice for robots and other applications.
There are many different types of planetary gear motors available. A planetary gear motor has three gears, the sun gear and planet gears, with each sharing equal amounts of work. They are ideal for applications requiring high torque and low-resistance operation, but they require more parts than their single-stage counterparts. The steel cut gears are the most durable, and are often used in applications that require high speeds. The nickel-steel gears are more absorptive, which makes them better for holding lubricant.
A planetary gear motor is a high-performance electrical vehicle motor. A typical planetary gear motor has a 3000 rpm speed, a peak torque of 0.32 Nm, and is available in 24V, 36V, and 48V power supply. It is also quiet and efficient, requiring little maintenance and offering greater torque to a modern electric car. If you are thinking of buying a planetary gear motor, be sure to do a bit of research before purchasing one.

China 12V DC Gear Motor High Torque Low Rpm Planetary     motor engine	China 12V DC Gear Motor High Torque Low Rpm Planetary     motor engine
editor by czh 2023-01-08

China Hot selling 12V high torque low rpm DC gear motor for Door Lock Actuator near me manufacturer

Product Description

12v higher torque low rpm dc equipment motor for Doorway Lock Actuator
 

Primary Functions

Motor technological data :

Equipment motor specialized knowledge : GM24-N20VA-13110-xxx

 
Equipment motor technological info : GM24-N20VA-09220-xxx

 
Gear motor technical information : GM24-N20VA-571-xxx

Product Application

Packing & Delivery
Packaging: single carton packing, one hundred items for every box.
Shipping and delivery time:
DHL: 3-5 working times
UPS: 5-7 doing work days
TNT: 5-7 functioning times
FedEx: 7-9 working days
EMS: twelve-fifteen functioning days
By Sea: Relies upon on which region

Our Business

TT Motor (HK) Industrial Co., Ltd has been specializing in bldc motor,brushless motor,stepper motor,dc motor,electrical motor,micro motors, geared motors and their respective parts considering that 2006.

Our items are extensively used in entertainment systems, vehicles, house and industrial appliances and equipment and numerous other people. Our merchandise are reliable and extended-lasting, and backed by several years of expertise. We export ninety eight% of our output throughout the world. 

By leveraging our challenging-received status for honesty, dependability and high quality, TT Motor aims to carry on as a pioneer in the income abroad by searching for international partners. If your company is an finish-user of micro-motors, a distributor or an agent, remember to make contact with us. We appear forward to currently being CZPT to perform with each other with you in the around future.

Certifications

FAQ

Dynamic Modeling of a Planetary Motor

A planetary gear motor is composed of a series of gears rotating in best synchrony, making it possible for them to provide torque in a larger output potential than a spur gear motor. Not like the planetary motor, spur equipment motors are less complicated to develop and value considerably less, but they are greater for programs demanding reduced torque output. That is due to the fact each and every equipment carries the total load. The subsequent are some important differences among the two kinds of gearmotors.

planetary gear technique

A planetary gear transmission is a variety of equipment system that transfers torque from a single resource to yet another, normally a rotary movement. Additionally, this variety of equipment transmission calls for dynamic modeling to investigate its toughness and reliability. Earlier scientific studies included the two uncoupled and coupled meshing designs for the investigation of planetary equipment transmission. The mixed model considers the two the shaft structural stiffness and the bearing support stiffness. In some purposes, the flexible planetary gear could impact the dynamic response of the system.
In a planetary equipment device, the axial stop floor of the cylindrical part is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of protecting against overseas particles from getting into the planetary gear program. A planetary equipment unit is a fantastic decision if your planetary motor’s pace is high. A large-top quality planetary gear method can provide a outstanding performance than traditional techniques.
A planetary gear technique is a complicated mechanism, involving 3 moving backlinks that are related to every other by way of joints. The sunlight equipment acts as an enter and the world gears act as outputs. They rotate about their axes at a ratio decided by the quantity of enamel on every gear. The solar equipment has 24 teeth, while the world gears have 3-quarters that ratio. This ratio can make a planetary motor very efficient.
Motor

planetary equipment prepare

To predict the free of charge vibration response of a planetary motor equipment teach, it is essential to create a mathematical product for the method. Earlier, static and dynamic models have been used to research the conduct of planetary motor equipment trains. In this research, a dynamic product was created to look into the consequences of key layout parameters on the vibratory response. Essential parameters for planetary gear transmissions consist of the composition stiffness and mesh stiffness, and the mass and area of the shaft and bearing supports.
The design and style of the planetary motor equipment teach is made up of a number of phases that can run with variable input speeds. The design of the gear practice permits the transmission of high torques by dividing the load throughout numerous planetary gears. In addition, the planetary equipment train has multiple teeth which mesh simultaneously in procedure. This style also allows for larger performance and transmittable torque. Below are some other benefits of planetary motor equipment trains. All these benefits make planetary motor equipment trains a single of the most common kinds of planetary motors.
The compact footprint of planetary gears permits for excellent warmth dissipation. Substantial speeds and sustained performances will require lubrication. This lubricant can also decrease sounds and vibration. But if these attributes are not attractive for your application, you can choose a different gear sort. Alternatively, if you want to maintain large overall performance, a planetary motor gear practice will be the greatest choice. So, what are the benefits of planetary motor gears?

planetary equipment train with fixed provider teach ratio

The planetary equipment train is a frequent type of transmission in a variety of machines. Its primary benefits are substantial effectiveness, compactness, large transmission ratio, and electrical power-to-weight ratio. This type of equipment prepare is a combination of spur gears, one-helical gears, and herringbone gears. Herringbone planetary gears have lower axial drive and higher load carrying potential. Herringbone planetary gears are typically employed in weighty equipment and transmissions of big automobiles.
To use a planetary gear practice with a mounted carrier teach ratio, the first and 2nd planets need to be in a carrier position. The first earth is rotated so that its tooth mesh with the sun’s. The 2nd world, even so, are not able to rotate. It need to be in a provider situation so that it can mesh with the sunlight. This calls for a substantial diploma of precision, so the planetary gear practice is normally made of multiple sets. A minor investigation will simplify this layout.
The planetary gear train is manufactured up of 3 components. The outer ring gear is supported by a ring equipment. Every single gear is positioned at a particular angle relative to one particular another. This enables the gears to rotate at a mounted fee whilst transferring the motion. This design and style is also common in bicycles and other modest cars. If the planetary equipment teach has numerous stages, a number of ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Earth gears are extended into cylindrical cutters. The ring equipment is stationary and the world gears rotate about a sunshine axis. In the case of this design and style, the outer ring gear will have a -3/2 world equipment ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary equipment is skewed, and this will drastically decrease the load carrying ability of a needle bearing, and therefore the life of the bearing. To better recognize how this can influence a gear practice, we will look at two research executed on the load distribution of a planetary gear with a zero helix angle. The very first research was accomplished with a highly specialized plan from the bearing manufacturer INA/FAG. The pink line signifies the load distribution alongside a needle roller in a zero helix equipment, whilst the eco-friendly line corresponds to the identical distribution of masses in a 15 degree helix angle equipment.
Another strategy for identifying a gear’s helix angle is to take into account the ratio of the solar and world gears. Even though the sunlight equipment is normally on the enter facet, the earth gears are on the output aspect. The solar equipment is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Equally gears are attached to pins that support the earth gears. In the determine beneath, you can see the tangential and axial gear mesh forces on a planetary gear practice.
Yet another approach employed for calculating electricity decline in a planetary equipment train is the use of an car transmission. This variety of equipment provides well balanced overall performance in the two electricity performance and load capacity. Even with the complexities, this method gives a far more exact investigation of how the helix angle has an effect on power decline in a planetary gear train. If you might be interested in reducing the energy reduction of a planetary gear prepare, read on!

planetary gear train with spur gears

A planetary gearset is a kind of mechanical drive program that employs spur gears that transfer in reverse instructions within a plane. Spur gears are one of the a lot more simple sorts of gears, as they will not require any specialty cuts or angles to work. Instead, spur gears use a sophisticated tooth condition to figure out the place the enamel will make speak to. This in change, will decide the amount of electricity, torque, and velocity they can make.
A two-phase planetary equipment practice with spur gears is also feasible to operate at variable enter speeds. For this sort of a set up, a mathematical product of the equipment practice is created. Simulation of the dynamic conduct highlights the non-stationary effects, and the outcomes are in great settlement with the experimental info. As the ratio of spur gears to spur gears is not continual, it is referred to as a dedendum.
A planetary gear practice with spur gears is a type of epicyclic gear practice. In this situation, spur gears operate between gears that include equally inside and exterior teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the photo voltaic system. There are 4 primary parts of a planetary gear teach. The planet gear is positioned inside the sunshine equipment and rotates to transfer motion to the sunlight equipment. The planet gears are mounted on a joint provider that is related to the output shaft.
Motor

planetary equipment practice with helical gears

A planetary equipment train with helical tooth is an really effective transmission technique that can provide large stages of energy density. Helical gears are utilised to increase efficiency by providing a much more successful substitute to standard worm gears. This kind of transmission has the prospective to boost the general functionality of a technique, and its positive aspects extend much past the energy density. But what can make this transmission technique so interesting? What are the essential factors to contemplate when creating this kind of transmission system?
The most basic planetary teach is made up of the sunlight equipment, planet equipment, and ring equipment aspects. The number of planets may differ, but the basic construction of planetary gears is related. A simple planetary geartrain has the sunlight gear driving a provider assembly. The number of planets can be as reduced as two or as high as six. A planetary gear train has a reduced mass inertia and is compact and trustworthy.
The mesh stage homes of a planetary gear teach are particularly crucial in designing the profiles. Different parameters this sort of as mesh phase big difference and tooth profile modifications should be analyzed in depth in buy to fully realize the dynamic qualities of a PGT. These factors, jointly with others, determine the helical gears’ functionality. It is as a result crucial to understand the mesh section of a planetary equipment teach to design and style it successfully.

China Hot selling 12V high torque low rpm DC gear motor for Door Lock Actuator     near me manufacturer China Hot selling 12V high torque low rpm DC gear motor for Door Lock Actuator     near me manufacturer