Tag Archives: vacuum air pump

China Best Sales High Quality AC Electric Synchronous Motor for Fan Air Conditioner Ydk-25-6-3 vacuum pump and compressor

Product Description

For the high efficiency AC motor, we have YDK-25-6, YDK-13-4, YDK-S-20, YDK-50-6H, YDK-90-6,YDK-250-6 series,
it can be widely used to drive various general mechanical equipment, such as fans, air conditioner, electric hair dryer ,
Swimming Pool pump, dehumidifier etc.

And we also can customize as your request for the different Voltage, Frequency, Output, speed, shaft size and shape.

Model NO. YDK-25-6
Voltage 220V Frequency 50 Hz
Output 25W Speed 850±30 r/min
Shaft diameter 8mm/0.31inches Motor diameter 97mm/3.8inches
Number of Poles  6P Insulation B
steering  CCW Ambient temperature -30ºC~43ºC
Warm Tips: We can customize per your request for the Voltage,Frequency,Output,speed, shaft size and shape

FAQ:

Q1: Are you factory?

 A: Yes, we are a professional motor manufacturing factory for 25 years with 80 employees. We have strong product development and production capacities for OEM and ODM. Our main products include fan motor, air-conditioning motors, swimming pool pump motor and etc., which are sold to Europe, North America, Middle East and South Asia.

 

Q2: What’s your lead time?
A: 15-20 days for buck production. Customized products depends on sampling time.

Q3: What is your MOQ?
A: MOQ depends on different items, which is negotiable.

Q4: May I get samples?
A: You are welcome to order samples that need 10 days to prepare.
    Sample charges are as bulk production price.
    Express charges shall be freight collect.

Q5: How about your quality control?
A: From raw material to finished products, we have strict and complete IPQC. And advanced test ing machine can assure of qualified products delivered.

Q6: Can you make motors with customize specifications?
A: Yes, we can customize per your request for the voltage, speed, torque,shaft size and shape. 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Samples:
US$ 12.89/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

dc motor

Can you explain the basic working principle behind a DC motor?

A DC (Direct Current) motor operates based on the fundamental principle of electromagnetic induction. It converts electrical energy into mechanical motion by utilizing the interaction between magnetic fields and current-carrying conductors. Here’s a detailed explanation of the basic working principle behind a DC motor:

1. Construction:

A DC motor consists of several key components:

  • Stator: The stator is the stationary part of the motor and typically consists of permanent magnets or electromagnets that produce a fixed magnetic field.
  • Rotor: The rotor is the moving part of the motor and is connected to the shaft. It contains coils or windings that carry the armature current.
  • Armature: The armature is the core of the rotor that holds the armature windings. The windings are usually made of copper wire and are evenly spaced around the armature.
  • Commutator: The commutator is a cylindrical ring attached to the rotor shaft. It consists of multiple segments, usually made of copper, that are insulated from each other.
  • Brushes: The brushes are stationary contacts that make physical contact with the commutator segments. They are typically made of carbon or graphite and provide electrical connections to the armature windings.

2. Electromagnetic Induction:

When a current-carrying conductor is placed in a magnetic field, it experiences a force due to the interaction between the magnetic field and the current. This phenomenon is described by the right-hand rule, where the direction of the force is perpendicular to both the current direction and the magnetic field direction.

3. Motor Operation:

When a DC motor is powered, a DC voltage is applied to the armature windings through the brushes and commutator. The current flowing through the armature windings creates a magnetic field around the windings. This magnetic field interacts with the fixed magnetic field produced by the stator, resulting in a force that causes the rotor to rotate.

4. Commutation:

The commutation process is crucial for the continuous rotation of the rotor in a DC motor. As the rotor spins, the brushes make contact with different commutator segments, effectively reversing the direction of the current in the armature windings at the appropriate timing. This reversal of current flow ensures that the torque generated in the armature windings is always in the same direction, allowing for continuous rotation of the rotor.

5. Speed Control:

The speed of a DC motor can be controlled by varying the applied voltage. Reducing the voltage results in a decrease in the magnetic field strength, which in turn decreases the force acting on the armature windings. This reduction in force leads to a decrease in the motor’s speed. Conversely, increasing the voltage increases the speed of the motor. Precise speed control can be achieved by using electronic circuits to regulate the voltage supplied to the motor.

6. Advantages and Applications:

DC motors offer several advantages, including:

  • High starting torque, making them suitable for applications requiring high initial force.
  • Excellent speed control capabilities, allowing for precise and adjustable speed regulation.
  • Relatively simple construction and ease of maintenance.
  • Wide range of sizes and power ratings, making them adaptable to various applications.

DC motors find extensive use in numerous applications, such as robotics, industrial automation, electric vehicles, appliances, and more.

By understanding the basic working principle behind a DC motor, one can appreciate its functionality and explore its applications in different fields.

dc motor

Can you explain the concept of armature winding in a DC motor?

In a DC (Direct Current) motor, the armature winding is a crucial component that plays a significant role in the motor’s operation. It is responsible for producing the magnetic field that interacts with the stator’s magnetic field, resulting in the generation of torque and the rotation of the motor. Here’s a detailed explanation of the concept of armature winding in a DC motor:

The armature winding is a coil or set of coils made of insulated wire that is wound around the armature core, which is typically a laminated iron core. The armature winding is located on the rotor of the motor and is connected to the commutator. It carries the armature current, which is the current that flows through the winding to create the magnetic field. The armature winding is usually made of copper wire due to its excellent electrical conductivity.

When a current passes through the armature winding, it generates a magnetic field around the winding according to Ampere’s circuital law. The direction of the magnetic field is determined by the right-hand rule, where the thumb represents the direction of the current flow, and the curled fingers indicate the direction of the magnetic field.

The interaction between the magnetic field produced by the armature winding and the magnetic field produced by the stator’s permanent magnets or electromagnets creates a mechanical force, known as torque. This torque causes the rotor to rotate, converting electrical energy into mechanical motion.

The armature winding is designed in such a way that it produces a multipole magnetic field. The number of poles in the winding corresponds to the number of poles in the stator’s magnetic field. This ensures that the magnetic fields of the armature and stator are properly aligned for efficient torque generation.

The armature winding is connected to the commutator, which is a cylindrical ring with multiple segments that are insulated from each other. As the rotor spins, the brushes make physical contact with different segments of the commutator, effectively reversing the direction of the current in the armature winding. This reversal of current flow ensures that the torque generated in the armature winding is always in the same direction, enabling continuous rotation of the rotor.

The design and configuration of the armature winding, including the number of turns, wire gauge, and connection scheme, can influence the motor’s performance characteristics, such as torque, speed, and efficiency. Optimal winding design is crucial for achieving the desired motor performance in various applications.

In summary, the armature winding in a DC motor is responsible for producing the magnetic field that interacts with the stator’s magnetic field, resulting in the generation of torque and the rotation of the motor. It is a critical component that facilitates the conversion of electrical energy into mechanical motion.

dc motor

Are there safety considerations or maintenance practices associated with DC motors?

Yes, there are safety considerations and maintenance practices associated with DC (Direct Current) motors. DC motors, like any other electrical equipment, require proper handling, maintenance, and adherence to safety guidelines to ensure safe operation and longevity. Here’s a detailed explanation of the safety considerations and maintenance practices associated with DC motors:

Safety Considerations:

Electrical Hazards: DC motors operate with high voltages and currents, posing electrical hazards. It is essential to follow proper electrical safety practices, such as wearing appropriate personal protective equipment (PPE) and ensuring that electrical connections are secure and insulated. Proper grounding and isolation techniques should be employed to prevent electrical shocks and accidents.

Lockout/Tagout: DC motors, especially in industrial settings, may require maintenance or repair work. It is crucial to implement lockout/tagout procedures to isolate the motor from its power source before performing any maintenance or servicing activities. This ensures that the motor cannot be accidentally energized during work, preventing potential injuries or accidents.

Overheating and Ventilation: DC motors can generate heat during operation. Adequate ventilation and cooling measures should be implemented to prevent overheating, as excessive heat can lead to motor damage or fire hazards. Proper airflow and ventilation around the motor should be maintained, and any obstructions or debris should be cleared.

Mechanical Hazards: DC motors often have rotating parts and shafts. Safety guards or enclosures should be installed to prevent accidental contact with moving components, mitigating the risk of injuries. Operators and maintenance personnel should be trained to handle motors safely and avoid placing their hands or clothing near rotating parts while the motor is running.

Maintenance Practices:

Cleaning and Inspection: Regular cleaning and inspection of DC motors are essential for their proper functioning. Accumulated dirt, dust, or debris should be removed from the motor’s exterior and internal components. Visual inspections should be carried out to check for any signs of wear, damage, loose connections, or overheating. Bearings, if applicable, should be inspected and lubricated as per the manufacturer’s recommendations.

Brush Maintenance: DC motors that use brushes for commutation require regular inspection and maintenance of the brushes. The brushes should be checked for wear, proper alignment, and smooth operation. Worn-out brushes should be replaced to ensure efficient motor performance. Brush holders and springs should also be inspected and cleaned as necessary.

Electrical Connections: The electrical connections of DC motors should be periodically checked to ensure they are tight, secure, and free from corrosion. Loose or damaged connections can lead to voltage drops, overheating, and poor motor performance. Any issues with the connections should be addressed promptly to maintain safe and reliable operation.

Insulation Testing: Insulation resistance testing should be performed periodically to assess the condition of the motor’s insulation system. This helps identify any insulation breakdown or degradation, which can lead to electrical faults or motor failures. Insulation resistance testing should be conducted following appropriate safety procedures and using suitable testing equipment.

Alignment and Balance: Proper alignment and balance of DC motors are crucial for their smooth operation and longevity. Misalignment or imbalance can result in increased vibrations, excessive wear on bearings, and reduced motor efficiency. Regular checks and adjustments should be made to ensure the motor is correctly aligned and balanced as per the manufacturer’s specifications.

Manufacturer’s Recommendations: It is important to refer to the manufacturer’s guidelines and recommendations for specific maintenance practices and intervals. Each DC motor model may have unique requirements, and following the manufacturer’s instructions ensures that maintenance is carried out correctly and in accordance with the motor’s design and specifications.

By adhering to safety considerations and implementing proper maintenance practices, DC motors can operate safely, reliably, and efficiently throughout their service life.

China Best Sales High Quality AC Electric Synchronous Motor for Fan Air Conditioner Ydk-25-6-3   vacuum pump and compressor	China Best Sales High Quality AC Electric Synchronous Motor for Fan Air Conditioner Ydk-25-6-3   vacuum pump and compressor
editor by CX 2024-04-04

China Hot selling Air Compressor Maintenance Parts 1622311051 Original Gear Motor C111 vacuum pump adapter

Product Description

Product Description

1622-3694-80 Blow off Valve For CHINAMFG Air Compressor

Blow Off Valve is a specialized component designed to fit CHINAMFG air compressors, serving to regulate and release excessive pressure.

  • Fast Pressure Relief: Balances compressor by releasing excess air.
  • Accurate Pressure Limiting: Guards against overload.
  • Atlas Copco Compatibility: Designed to fit and integrate perfectly with various models.
  • Durability: Robust construction for enduring demanding industrial use.
  • Adjustable Settings: Enables customizing pressure release based on application needs.
  • Low Maintenance: Self-regulating design reduces upkeep and increases uptime.

Part Number 

 

Product

Blow-off Valve

 

Usage Scenario

Air Compressor Parts

 

Original or Compatible

Compatible 

 

    Packaging & Shipping

    Our Advantages

    • Decades of Expertise: With over 30 years of experience, we specialize in manufacturing various filter models, showcasing unmatched industry knowledge.
    • Innovation at the Core: We prioritize independent research and development, ensuring our filters stay technologically advanced and reliable.
    • Quality Materials, Global Sourcing: Our filters utilize top-notch materials sourced from Germany, Japan, Korea, and the USA, guaranteeing durability and efficiency.
    • Tailored Solutions with OEM/ODM: Providing customized solutions to meet specific needs, our OEM/ODM services set us apart in the market.
    • Competitive Pricing, Premium Quality: Enjoy cost-effective, direct-from-factory pricing without compromising on the quality of our products.
    • Comprehensive Air Compressor Parts: Explore our wide range, encompassing not only filters but also original and compatible air compressor parts.
    • Efficient and Responsive Service: Contact us with your requirements for a swift and hassle-free experience, saving you valuable time.

    At Answk Filter Products Factory, we bring forth our strengths rooted in decades of experience, innovative solutions, quality materials, customization, competitive pricing, and efficient service.

    Company Profile

    Our factory is a state-owned enterprise previously and concentrated on producing filter cartridges and filter media nearly 30 years.We provide wide range of Air filter,Oil/Fuel filter, Hydraulic Filter,Oil Separator,Air filter cartridge,Air Compressor,Air Compressor Parts in different fields,such as shipbuilding, mining, power supplying, air compressor,Engineer Machine,Car etc. For better quality control, most of the major producing machines are designed by ourselves. Answkfilter will focus on innovating and developing high performance and excellent quality filters that meet the demands of market and industries.

    Our Workshop

    Certifications

    FAQ

    1. Who are we?
    Established in HangZhou, China, we operate within diverse markets, with a significant presence in the Domestic Market(20.00%),Western Europe(15.00%),Southeast Asia(12.00%),Southern Europe(10.00%),North America(7.00%),Eastern Europe(7.00%),Northern Europe(5.00%),South
    America(5.00%),Eastern Asia(5.00%),Mid East(5.00%),Oceania(3.00%),South Asia(2.50%),Africa(2.50%),Central America(1.00%). Our team, consisting of approximately 51-100 professionals, is dedicated to serving our customers worldwide.

    2. Quality Assurance:
    Ensuring top-notch quality is a cornerstone of our operation. We adhere to OE standards and subject every product to rigorous testing before shipment.

    3.Our Product Range:
    Explore our comprehensive selection, featuring air filter cartridges, air filters, oil/fuel filters, hydraulic filters, oil separators, air compressor parts, and more.

    4. Why Choose Us:
    What sets us apart is our unique history as a formerly state-owned enterprise with almost 30 years of expertise. We prioritize quality and offer competitive pricing, making us a reliable choice in the market.

    5. Our Services:

    • Delivery Terms: FOB, CFR, CIF, EXW, FAS, CIP, FCA, CPT, DEQ, DDP, DDU, Express Delivery, DAF, DES
    • Accepted Payment Currencies: USD, EUR, CNY
    • Payment Types: T/T, MoneyGram, PayPal, Western Union, Cash, Escrow
    • Languages Spoken: English, Chinese

    Choose us for reliable products, quality assurance, and a diverse range of services tailored to your needs.

     

     

    /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    Customized: Customized
    Standard Component: Standard Component
    Material: Engineering Plastics
    Category: Solenoid Valve
    Part Number: 1622369480
    Condition: New
    Samples:
    US$ 23/Piece
    1 Piece(Min.Order)

    |

    Customization:
    Available

    |

    gear motor

    Where can individuals find reliable resources for learning more about gear motors and their applications?

    Individuals seeking to learn more about gear motors and their applications have access to various reliable resources that provide valuable information and insights. Here are some sources where individuals can find reliable information about gear motors:

    1. Manufacturer Websites:

    Manufacturer websites are a primary source of information about gear motors. Gear motor manufacturers often provide detailed product specifications, application guides, technical documentation, and educational materials on their websites. These resources offer insights into different gear motor types, features, performance characteristics, and application considerations. Manufacturer websites are a reliable and convenient starting point for learning about gear motors.

    2. Industry Associations and Organizations:

    Industry associations and organizations related to mechanical engineering, automation, and motion control often have resources and publications dedicated to gear motors. These organizations provide technical articles, whitepapers, industry standards, and guidelines related to gear motor design, selection, and application. Examples of such associations include the American Gear Manufacturers Association (AGMA), International Electrotechnical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE).

    3. Technical Publications and Journals:

    Technical publications and journals focused on engineering, robotics, and motion control are valuable sources of in-depth knowledge about gear motors. Publications like IEEE Transactions on Industrial Electronics, Mechanical Engineering magazine, or Motion System Design magazine often feature articles, case studies, and research papers on gear motor technology, advancements, and applications. These publications provide authoritative and up-to-date information from industry experts and researchers.

    4. Online Forums and Communities:

    Online forums and communities dedicated to engineering, robotics, and automation can be excellent resources for discussions, insights, and practical experiences related to gear motors. Websites like Stack Exchange, engineering-focused subreddits, or specialized forums provide platforms for individuals to ask questions, share knowledge, and engage in discussions with professionals and enthusiasts in the field. Participating in these communities allows individuals to learn from real-world experiences and gain practical insights.

    5. Educational Institutions and Courses:

    Technical colleges, universities, and vocational training centers often offer courses or programs in mechanical engineering, mechatronics, or automation that cover gear motor fundamentals and applications. These educational institutions provide comprehensive curricula, textbooks, and lecture materials that can serve as reliable resources for individuals interested in learning about gear motors. Additionally, online learning platforms like Coursera, Udemy, or LinkedIn Learning offer courses on topics related to gear motors and motion control.

    6. Trade Shows and Exhibitions:

    Attending trade shows, exhibitions, and industry conferences related to automation, robotics, or motion control provides opportunities to learn about the latest advancements in gear motor technology. These events often feature product demonstrations, technical presentations, and expert panels where individuals can interact with gear motor manufacturers, industry experts, and other professionals. It’s a great way to stay updated on the latest trends, innovations, and applications of gear motors.

    When seeking reliable resources, it’s important to consider the credibility of the source, the expertise of the authors, and the relevance to the specific area of interest. By leveraging these resources, individuals can gain a comprehensive understanding of gear motors and their applications, from basic principles to advanced topics, enabling them to make informed decisions and effectively utilize gear motors in their projects or applications.

    gear motor

    Can gear motors be used for precise positioning, and if so, what features enable this?

    Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

    1. Gear Reduction:

    One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

    2. High Resolution Encoders:

    Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

    3. Closed-Loop Control:

    Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

    4. Stepper Motors:

    Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

    5. Servo Motors:

    Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

    6. Motion Control Algorithms:

    Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

    By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

    gear motor

    How does the gearing mechanism in a gear motor contribute to torque and speed control?

    The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

    The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

    Torque Control:

    The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

    By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

    Speed Control:

    The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

    By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

    In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

    China Hot selling Air Compressor Maintenance Parts 1622311051 Original Gear Motor C111   vacuum pump adapter	China Hot selling Air Compressor Maintenance Parts 1622311051 Original Gear Motor C111   vacuum pump adapter
    editor by CX 2024-03-29

    China OEM Low Noise AC/DC 48V Brushless DC Motor Brushless Dish-Washer Motor for Suction Hoods / Electric Tools/ Air Purifier Motor with IP65 Waterproof vacuum pump belt

    Product Description

    Product Description
    Our Company Website http://greatup

    1. Stator size is optional
    2. Safe, reliable, low noise, good starting, long life
    3. Strong power
    Rated voltage 110~120V/220~240V-50/60Hz
    Typical used: Exhaust fan, air purifier, micro-oven, fan, induction cooker, refrigerator, pump, heater, hood oven, blwer, air conditioner, Heater machines, dehumidifiers
    Thermal protector with 1 shot fuse or multi shot fuse

    Typical Market
    Products for industry and commerce uses motor  
    Application
    Household appliances motor  Industrial equipment motor  Fan motor  
    Main Technical Parameters
    Vol: 12-36V DC
    Rated Speed: 1900-4500RPM
    Rated Power: 17-40W
    Insulation Class: B  F  H
    Typical application
    Heat exchanger    
    Air exchange fan       
    Fan        

     

    Typical model load performance             
      Type Voltage Range(V) Rated Voltage (V) Speed (RPM) Current (A) Speed (RPM) Current (A) P(W) Max Eff.(%)
    BL80404-01 34-38/DC 36/DC 6000 0.3 4500 1.1 40 71
    BL80303-01 22-26/DC 24/DC 4700 0.3 3000 0.8 20 63
    BL80301-01 22-26/DC 24/DC 3300 0.1 1900 0.7 17 55

    Our company FAQ for you

    (1) Q: What kind motors you can provide?
    A:For now,we mainly provide Kitchen Hood Motor,DC Motor,Gear Motor,Fan Motor Refrigerator Motor,Hair Dryer Motor Blender Motor Mixer Motor,
    Shade Pole Motor,Capacitor Motor,BLDC Motor PMDC Motor,Synchronous Motor,Stepping Motor etc.

    (2) Q: Is it possible to visit your factory
    A: Sure. But please kindly keep us posted a few days in advance. We need to check our
    schedule to see if we are available then.

    (3) Q: Can I get some samples
    A: It depends. If only a few samples for personal use or replacement, I am afraid it will
    be difficult for us to provide, because all of our motors are custom made and no stock
    available if there is no further needs. If just sample testing before the official order and
    our MOQ, price and other terms are acceptable, we’d love to provide samples.

    (4) Q: Is there a MOQ for your motors?
    A: Yes. The MOQ is between 1000~10,000pcs for different models after sample approval.
    But it’s also okay for us to accept smaller lots like a few dozens, hundreds or thousands
    For the initial 3 orders after sample approval.For samples, there is no MOQ requirement. But the less the better (like no more than 5pcs) on condition that the quantity is enough in case any changes needed after initial testing.

    ABOUT US

    Ritscher group was set up in 2006.we always focus on micro-motors for household electrical appliance and industry appliance since setting up.currently we have 2 professional micro-motor factories in China  which severally located in HangZhou city and HangZhou city.it has an area of 25,000 square CHINAMFG plants and more than 300 employees, annual output  is 3 million pcs and has 5 million pcs annual producing capacity.after several years development,we had built a great reputation in the market and got more and more customers’  trust in the world.
    We  started from shaded pole motors  at beginning, up to now,our product  included of shaded pole motors,synchronous motors,stepping motors ,capacitor motors, BLDC motors, DC motors and compressors. Our product  are widely used for making refrigerators, freezers, micro-wave ovens, air warmers, air exhausters, ventilators,ovens, air filter, massage machines and many other equipments.
    As a realiable quality guaranty,Ritscher has complete R&D departement,QC department,producing department,purchase department etc. has perfect producing equipment like Aluminum diecasting, Zinc diecasting, Sheet metal stamping, Plastic injection molding etc. also test/ detection device like multiplex temp measuring device, performance parameter inspection device, Phenol peptide solution pinhole tester,Anechoic room etc.
     
    Endeavoring to provide the best product and service to customers,we always do the most effort to become an outstanding manufacturer of micro motors.
    Ritscher is always willing to establish sincere business relationship with friends from all over the world.
    Welcome contact with us!
     
    Take CHINAMFG ,enjoy modern life!

      /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    Application: Industrial
    Speed: Variable Speed
    Number of Stator: Single-Phase
    Function: Driving, Control
    Casing Protection: Protection Type
    Number of Poles: 2
    Samples:
    US$ 0/Piece
    1 Piece(Min.Order)

    |

    Customization:
    Available

    |

    dc motor

    What is a DC motor, and how does it differ from other types of electric motors?

    A DC (Direct Current) motor is an electric motor that converts electrical energy into mechanical motion. It operates based on the principle of electromagnetic induction and the interaction between current-carrying conductors and magnetic fields. DC motors are widely used in various applications due to their simplicity, controllability, and versatility. Here’s a detailed explanation of what a DC motor is and how it differs from other types of electric motors:

    1. Basic Operation:

    In a DC motor, electrical energy is supplied to the motor’s armature through a DC power source, typically a battery or a rectified power supply. The armature consists of multiple coils or windings that are evenly spaced around the motor’s rotor. The rotor is a cylindrical core with a shaft that rotates when the motor is energized. When current flows through the armature windings, it creates a magnetic field that interacts with the fixed magnetic field produced by the motor’s stator. This interaction generates a torque, causing the rotor to rotate.

    2. Commutation:

    DC motors employ a commutator and brushes for the conversion of electrical energy and the rotation of the rotor. The commutator consists of a segmented cylindrical ring attached to the rotor shaft, and the brushes are stationary conductive contacts that make contact with the commutator segments. As the rotor spins, the brushes maintain contact with the commutator segments, periodically reversing the direction of the current flow in the armature windings. This reversal of current flow in the armature windings ensures continuous rotation of the rotor in the same direction.

    3. Types of DC Motors:

    DC motors can be classified into different types based on their construction and the method of field excitation. The two main types are:

    • Brushed DC Motors: Brushed DC motors have a mechanical commutator and brushes to switch the current direction in the armature windings. These motors are relatively simple, cost-effective, and offer good torque characteristics. However, the commutator and brushes require regular maintenance and can generate electrical noise and brush wear debris.
    • Brushless DC Motors (BLDC): Brushless DC motors, also known as electronically commutated motors (ECMs), use electronic circuits and sensors to control the current flow in the motor windings. They eliminate the need for brushes and commutators, resulting in reduced maintenance and improved reliability. BLDC motors offer higher efficiency, smoother operation, and better speed control compared to brushed DC motors.

    4. Speed Control:

    DC motors provide excellent speed control capabilities. By adjusting the voltage applied to the motor, the speed of the DC motor can be regulated. Lowering the voltage reduces the motor’s speed, while increasing the voltage increases the speed. This feature makes DC motors suitable for applications that require precise speed control, such as robotics, conveyor systems, and electric vehicles.

    5. Advantages and Disadvantages:

    DC motors have several advantages, including:

    • Simple construction and easy maintenance (for brushed DC motors).
    • High starting torque.
    • Precise speed control.
    • Good controllability over a wide range of loads.

    However, DC motors also have some limitations, such as:

    • Brushed DC motors require periodic maintenance and have limited brush life.
    • Brushed DC motors can generate electrical noise.
    • Brushless DC motors are often more expensive compared to brushed DC motors.

    6. Differences from Other Electric Motors:

    DC motors differ from other types of electric motors, such as AC (Alternating Current) motors, in several ways:

    • Power Source: DC motors require a DC power source, while AC motors operate from an AC power supply.
    • Speed Control: DC motors offer precise speed control by adjusting the applied voltage, whereas AC motors typically rely on frequency control for speed regulation.
    • Construction: DC motors use a commutator and brushes (in brushed DC motors) or electronic commutation (in brushless DC motors), while AC motors do not require commutation.
    • Starting Torque: DC motors typically provide higher starting torque compared to AC motors.

    Overall, DC motors are versatile and widely used in various applications due to their controllability, speed regulation capabilities, and simplicity. The advancements inpower electronics and motor control technologies have further enhanced the performance and efficiency of DC motors, making them a popular choice in many industries.

    dc motor

    How is the efficiency of a DC motor determined, and what factors can affect it?

    In a DC (Direct Current) motor, efficiency refers to the ratio of the motor’s output power (mechanical power) to its input power (electrical power). It is a measure of how effectively the motor converts electrical energy into mechanical work. The efficiency of a DC motor can be determined by considering several factors that affect its performance. Here’s a detailed explanation of how the efficiency of a DC motor is determined and the factors that can influence it:

    The efficiency of a DC motor is calculated using the following formula:

    Efficiency = (Output Power / Input Power) × 100%

    1. Output Power: The output power of a DC motor is the mechanical power produced at the motor’s shaft. It can be calculated using the formula:

    Output Power = Torque × Angular Speed

    The torque is the rotational force exerted by the motor, and the angular speed is the rate at which the motor rotates. The output power represents the useful work or mechanical energy delivered by the motor.

    2. Input Power: The input power of a DC motor is the electrical power supplied to the motor. It can be calculated using the formula:

    Input Power = Voltage × Current

    The voltage is the electrical potential difference applied to the motor, and the current is the amount of electrical current flowing through the motor. The input power represents the electrical energy consumed by the motor.

    Once the output power and input power are determined, the efficiency can be calculated using the formula mentioned earlier.

    Several factors can influence the efficiency of a DC motor:

    1. Copper Losses:

    Copper losses occur due to the resistance of the copper windings in the motor. These losses result in the conversion of electrical energy into heat. Higher resistance or increased current flow leads to greater copper losses and reduces the efficiency of the motor. Using thicker wire for the windings and minimizing resistance can help reduce copper losses.

    2. Iron Losses:

    Iron losses occur due to magnetic hysteresis and eddy currents in the motor’s iron core. These losses result in the conversion of electrical energy into heat. Using high-quality laminated iron cores and minimizing magnetic flux variations can help reduce iron losses and improve efficiency.

    3. Friction and Windage Losses:

    Friction and windage losses occur due to mechanical friction between moving parts and air resistance. These losses result in the conversion of mechanical energy into heat. Proper lubrication, efficient bearing systems, and aerodynamically optimized designs can help minimize friction and windage losses.

    4. Brush and Commutator Losses:

    In brushed DC motors, brush and commutator losses occur due to the friction and electrical resistance at the brush-commutator interface. These losses result in the conversion of electrical energy into heat. Using high-quality brushes and commutators, reducing brush voltage drop, and minimizing the number of commutator segments can help reduce these losses.

    5. Magnetic Field Design:

    The design of the magnetic field in the motor significantly affects its efficiency. Optimizing the magnetic field for the specific application, such as selecting appropriate magnet materials or designing efficient electromagnets, can improve the motor’s efficiency.

    6. Motor Load:

    The load on the motor, including the torque and speed requirements, can impact its efficiency. Operating the motor close to its optimal load conditions or utilizing speed control techniques, such as pulse width modulation (PWM), can help improve efficiency by reducing unnecessary power consumption.

    7. Motor Size and Construction:

    The size and construction of the motor can influence its efficiency. Properly sizing the motor for the intended application and optimizing the design for reduced losses, improved cooling, and efficient heat dissipation can enhance overall efficiency.

    It’s important to note that the efficiency of a DC motor is typically highest at or near its rated load conditions. Deviating significantly from the rated load can result in reduced efficiency.

    In summary, the efficiency of a DC motor is determined by comparing the output power to the input power. Factors such as copper losses, iron losses, friction and windage losses, brush and commutator losses, magnetic field design, motor load, and motor size and construction can all influence the efficiency of a DC motor. By considering and optimizing these factors, the overall efficiency of the motor can be improved.

    dc motor

    Where can individuals find reliable resources for learning more about DC motors and their applications?

    Individuals seeking reliable resources to learn more about DC (Direct Current) motors and their applications can explore various sources that provide comprehensive and accurate information. Here’s a detailed explanation of where individuals can find reliable resources for learning about DC motors:

    1. Manufacturer Websites:

    Many DC motor manufacturers have dedicated sections on their websites that provide detailed information about their products, including specifications, application notes, technical guides, and whitepapers. These resources offer valuable insights into the design, operation, and application considerations of DC motors. Examples of reputable DC motor manufacturers include Baldor, Maxon Motor, and Faulhaber.

    2. Industry Associations and Organizations:

    Industry associations and organizations related to electrical engineering, automation, and motor technology can be excellent sources of reliable information. Examples include the Institute of Electrical and Electronics Engineers (IEEE) and the American Society of Mechanical Engineers (ASME). These associations often provide access to technical publications, research papers, conferences, and educational resources related to DC motors and their applications.

    3. Technical Books and Publications:

    Technical books and publications authored by experts in the field of electrical engineering and motor technology can provide in-depth knowledge about DC motors. Books such as “Electric Motors and Drives: Fundamentals, Types, and Applications” by Austin Hughes and “Practical Electric Motor Handbook” by Irving Gottlieb are widely regarded as reliable resources for learning about DC motors and their applications.

    4. Online Educational Platforms:

    Online educational platforms offer a wealth of resources for learning about DC motors. Websites like Coursera, Udemy, and Khan Academy provide online courses, tutorials, and video lectures on electrical engineering, motor theory, and applications. These platforms often have courses specifically dedicated to DC motors, covering topics such as motor principles, control techniques, and practical applications.

    5. Research Papers and Scientific Journals:

    Research papers published in scientific journals and conference proceedings can provide detailed insights into the latest advancements and research findings related to DC motors. Platforms like IEEE Xplore, ScienceDirect, and Google Scholar can be used to search for scholarly articles on DC motors. These papers are authored by researchers and experts in the field and provide reliable and up-to-date information on various aspects of DC motor technology.

    6. Online Forums and Communities:

    Online forums and communities focused on electrical engineering, motor technology, and DIY projects can be valuable resources for learning about DC motors. Platforms like Reddit, Stack Exchange (Electrical Engineering section), and specialized motor forums provide opportunities to ask questions, engage in discussions, and learn from experienced individuals in the field. However, it’s important to verify information obtained from online forums as they may contain a mix of opinions and varying levels of expertise.

    When accessing these resources, it’s essential to critically evaluate the information and cross-reference it with multiple sources to ensure accuracy and reliability. By utilizing a combination of manufacturer websites, industry associations, technical books, online educational platforms, research papers, and online communities, individuals can gain a comprehensive understanding of DC motors and their applications.

    China OEM Low Noise AC/DC 48V Brushless DC Motor Brushless Dish-Washer Motor for Suction Hoods / Electric Tools/ Air Purifier Motor with IP65 Waterproof   vacuum pump belt	China OEM Low Noise AC/DC 48V Brushless DC Motor Brushless Dish-Washer Motor for Suction Hoods / Electric Tools/ Air Purifier Motor with IP65 Waterproof   vacuum pump belt
    editor by CX 2024-03-28

    China wholesaler Three Phase AC Electric Motor Induction Motors for Water Pump, Air Compressor, Gear Reduce Fan Blower 380V AC Motor vacuum pump electric

    Product Description

    Product Description

    YE3-180S-2 170V,220V,380V IP55 Copper Wire High Efficiency AC Induction Motor

    General Introductions:

    YE3 series super efficiency motor is our company newest design efficiency products, which in line with the second efficiency standard in the provisions of GB 186~8-2-12″the energy efficiency limit and the energy efficiency rating of small and medium-sized 3 phase asynchronous motors and IEC60034-30-2008 efficiency standard level IE4.

    Advantages of this series motor: Improved structure, attractive appearance, high starting torque, high efficiency, low noise, high international protection class and insulation class, improved cooling capabilities.

    YE3 series motors is suitable for almost all applications, and could be used to drive all kinds of general purpose machines such as: compressors, ventilators, pumps, etc. And can also be used in the hazardous areas with oil and chemical, steel plants. Mining industry.

    Structure Declaration:

    Parallel vertical radiation CHINAMFG are adopted in frame design, and the ventilating structure contains 2 separate cooling wind paths. Air external to the motor would be driven by an external fan to blow over the radiation ribs. Meanwhile, there are 4 ventilating ducts within the frame, and the inner wind path is formed by an internal fan and axiel vents on rotor sheets. In this way, the heat dissipation efficiency is improved effectively. The external fan of 2-pole motors is an one-way tube-axiel fan, whose direction of rotation is fixed, while motors with 4~8poles are provided with a two-way radial centrifugal fan, whose direction of rotation can be arbitrarily selected.

    Squirrel-cage copper-bar structure or cast aluminum structure is adopted in rotor design, and the vibration is very low after high-precision dynamic balance and motor running balance tests.

    The primary terminal box is mounted at the top of the frame, can be required on left or right. It also can be mounting at a 45-degree angle according to users’ needs.

    Product details 

    Parameter 

    Package  
    Export fumigation wooden case

    Color template

    FAQ 

    Q1: What about the shipping methods?

    1): For urgent order and light weight, you can choose the following express: UPS, FedEx, TNT, DHL, EMS.

     For heavy weight, you can choose to deliver the goods by air or by sea to save cost.

    Q2: What about the payment methods?

    A2: We accept T/T, L/C for big amount, and for small amount, you can pay us by PayPal, Western Union etc.

    Q3: How much does it cost to ship to my country?

    A3: It depends on seasons. Fee is different in different seasons. You can consult us at all times.

    Q4: What’s your delivery time?

    A4: Usually we produce within 25-30days after the payment came.

    Q5: Can I print our logo/code/series number on your motor?

    A5: Yes, of course.

    Q6: Can I order some sample for our testing?

    A6: Yes, but it needs some expenses.

    Q7: Can you customize my product in special requirement?

    A7: Yes, we can offer OEM.

    Q8: What is your max temperature of motor ?

    A8: 150 -250 degree can customized with special wire 

    /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    Application: Industrial
    Speed: Constant Speed
    Number of Stator: Three-Phase
    Function: Driving
    Casing Protection: Closed Type
    Number of Poles: 2
    Customization:
    Available

    |

    gear motor

    Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

    Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

    1. Heavy-Duty Industrial Applications:

    Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

    • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
    • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
    • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
    • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

    2. Smaller-Scale Uses:

    While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

    • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
    • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
    • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
    • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

    Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

    gear motor

    Can gear motors be used for precise positioning, and if so, what features enable this?

    Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

    1. Gear Reduction:

    One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

    2. High Resolution Encoders:

    Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

    3. Closed-Loop Control:

    Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

    4. Stepper Motors:

    Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

    5. Servo Motors:

    Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

    6. Motion Control Algorithms:

    Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

    By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

    gear motor

    Can you explain the advantages of using gear motors in various mechanical systems?

    Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

    1. Torque Amplification:

    One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

    2. Speed Control:

    Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

    3. Directional Control:

    Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

    4. Efficiency and Power Transmission:

    Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

    5. Compact and Space-Saving Design:

    Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

    6. Durability and Reliability:

    Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

    By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

    China wholesaler Three Phase AC Electric Motor Induction Motors for Water Pump, Air Compressor, Gear Reduce Fan Blower 380V AC Motor   vacuum pump electricChina wholesaler Three Phase AC Electric Motor Induction Motors for Water Pump, Air Compressor, Gear Reduce Fan Blower 380V AC Motor   vacuum pump electric
    editor by CX 2024-02-21

    China Good quality DC Coil Double Shaft Motor for Air Conditioning vacuum pump and compressor

    Product Description

    Product Description

    ABOUT US
                                                                     CERTIFICATE


    FQA

     Q:Can I get a sample before the order because I really don’t know how is your quality?

     A: We offer free sample service! Do not hesitate to send inquiry to get the free sample!

     Q:What’s the delivery time? Because we really need them is urgently?

     A:7days For sending sample order. 20-30days for regular order , depends your order quantity . 

     Q:What’s the warranty period for your products?

     A: One year.

     Q:How to send a inquiry for more information?

     A:.When you send enquiry to us,please let us know your WECHAT,VIBER,WHATSAPP or SKYPE ID,so that we can quote the offer at once. We are always on line waiting for you. 

     Q: Are you a manufacturer or trading company?

     A:We are a manufacturer specialized MOTOR since 2013, such as washing machine motor , fan motor , shade-pole motor …

     Q:What certificate do you have?

     A: We have CE,CCC, ISO9001 and CQC Certificate.

     Q:Why you choose us?

     A: good quality , competitive price

     

    THANKS FOR YOUR TIME .

    /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    Application: Universal
    Speed: High Speed
    Number of Stator: Single-Phase
    Function: Driving
    Casing Protection: Protection Type
    Number of Poles: 2
    Samples:
    US$ 1/Piece
    1 Piece(Min.Order)

    |

    Customization:
    Available

    |

    dc motor

    In which applications are DC motors commonly used, and what advantages do they offer?

    DC (Direct Current) motors are widely used in various applications due to their versatility, controllability, and specific advantages they offer. Here’s a detailed explanation of the common applications of DC motors and the advantages they provide:

    1. Robotics:

    DC motors are extensively used in robotics for precise control of movement and manipulation. They provide high torque and speed control, allowing robots to perform tasks with accuracy and efficiency. DC motors enable robotic arms, grippers, and mobile robots to execute complex motions and interact with their environment effectively.

    2. Industrial Automation:

    In industrial automation, DC motors are employed in conveyors, actuators, and positioning systems. The ability to control the motor speed and torque makes them suitable for applications such as material handling, assembly lines, and CNC machines. DC motors offer precise control over acceleration, deceleration, and positioning, enhancing overall productivity and efficiency in manufacturing processes.

    3. Electric Vehicles:

    DC motors have been widely used in electric vehicles (EVs) for many years. They are commonly found in electric cars, motorcycles, and scooters. DC motors provide high torque from standstill, enabling efficient acceleration and smooth operation. They also offer regenerative braking capabilities, which help in energy recovery during deceleration, thereby increasing the vehicle’s overall efficiency.

    4. Appliances:

    DC motors are utilized in various household appliances, including fans, blenders, vacuum cleaners, and refrigerators. Their controllable speed and torque allow for efficient operation and improved energy consumption. In appliances where variable speed control is required, such as ceiling fans or blender settings, DC motors offer precise adjustment options to meet different user preferences.

    5. Renewable Energy Systems:

    DC motors play a crucial role in renewable energy systems, such as wind turbines and solar tracking systems. They convert the rotational energy from wind or sunlight into electrical energy. DC motors enable precise tracking of the sun’s movement for optimal solar energy collection and efficient conversion of wind energy into electricity.

    6. Advantages of DC Motors:

    DC motors offer several advantages that make them suitable for various applications:

    • Precise Speed Control: DC motors provide accurate and adjustable speed control, allowing for precise regulation of motor output.
    • High Starting Torque: DC motors deliver high torque at startup, making them suitable for applications requiring quick acceleration or heavy loads.
    • Controllability: DC motors can be easily controlled using voltage regulation, current limiting, and feedback control techniques.
    • Efficiency: DC motors have high efficiency, especially when operating at lower speeds.
    • Reliability: DC motors are known for their robustness and reliability, requiring minimal maintenance.
    • Compact Size: DC motors are available in various sizes and can be designed compactly, making them suitable for applications with space constraints.

    These advantages make DC motors an attractive choice in various industries and applications where precise control, high starting torque, and reliability are essential.

    dc motor

    Can DC motors be used in renewable energy systems, such as wind turbines or solar tracking systems?

    Yes, DC (Direct Current) motors can be effectively used in various renewable energy systems, including wind turbines and solar tracking systems. The unique characteristics and advantages of DC motors make them well-suited for these applications. Here’s a detailed explanation of how DC motors can be utilized in renewable energy systems:

    1. Wind Turbines:

    DC motors can be employed in wind turbines to convert the mechanical energy of the wind into electrical energy. There are two common configurations:

    a. Direct Drive Wind Turbines:

    In direct drive wind turbines, the rotor of the turbine is directly connected to a DC generator. The rotor’s rotational motion is transmitted directly to the generator, which produces DC electrical power. DC motors can be used as DC generators in this configuration. The advantage of using DC motors/generators is their simplicity, reliability, and ability to operate efficiently at variable speeds, which is beneficial in varying wind conditions.

    b. Hybrid Wind Turbines:

    Hybrid wind turbines combine both aerodynamic and electrical conversion systems. In this configuration, DC motors can be utilized for the pitch control mechanism and yaw control system. The pitch control mechanism adjusts the angle of the turbine blades to optimize performance, while the yaw control system enables the turbine to align itself with the wind direction. DC motors provide precise control and responsiveness required for these functions.

    2. Solar Tracking Systems:

    DC motors are commonly employed in solar tracking systems to maximize the efficiency of solar panels by optimizing their orientation towards the sun. There are two main types of solar tracking systems:

    a. Single-Axis Solar Tracking Systems:

    Single-axis solar tracking systems adjust the inclination of solar panels along a single axis (typically the east-west axis) to track the movement of the sun throughout the day. DC motors can be used to drive the rotation mechanism that adjusts the panel’s tilt angle. By continuously adjusting the panel’s position to face the sun directly, the solar energy harvested can be significantly increased, resulting in higher energy output compared to fixed solar panel installations.

    b. Dual-Axis Solar Tracking Systems:

    Dual-axis solar tracking systems adjust the inclination of solar panels along both the east-west and north-south axes to track the sun’s movement throughout the day and throughout the year. DC motors are utilized in the rotation mechanisms for both axes. This type of solar tracking system provides the highest possible energy yield by keeping the solar panels perpendicular to the sun’s rays at all times, maximizing the exposure to sunlight.

    DC motors are preferred in renewable energy systems due to their advantages, including:

    • Efficiency at Variable Speeds: DC motors can operate efficiently at varying speeds, making them suitable for applications with fluctuating wind speeds or changing solar angles.
    • Control and Precision: DC motors offer precise control and responsiveness, allowing for accurate tracking and adjustment in wind turbines and solar tracking systems.
    • Reliability: DC motors are known for their reliability, with fewer moving parts compared to other motor types, reducing the risk of failure in remote or harsh environments.
    • Compatibility with Energy Storage Systems: DC motors can easily be integrated with energy storage systems, such as batteries or supercapacitors, to store excess electrical energy generated by wind turbines or solar panels.

    In conclusion, DC motors can be effectively utilized in renewable energy systems such as wind turbines and solar tracking systems. Their efficiency, control capabilities, reliability, and compatibility with energy storage systems make them a suitable choice for these applications, contributing to the advancement of sustainable energy generation.

    dc motor

    Are there innovations or emerging technologies in the field of DC motor design?

    Yes, there have been several innovations and emerging technologies in the field of DC (Direct Current) motor design. These advancements aim to improve the performance, efficiency, reliability, and overall capabilities of DC motors. Here’s a detailed explanation of some notable innovations and emerging technologies in DC motor design:

    1. Brushless DC Motors:

    One significant advancement in DC motor design is the development and widespread adoption of brushless DC motors (BLDC motors). Unlike traditional DC motors that use brushes for commutation, BLDC motors employ electronic commutation through the use of permanent magnets and motor controller circuits. This eliminates the need for brushes, reducing maintenance requirements and improving overall motor efficiency and lifespan. BLDC motors offer higher torque density, smoother operation, better speed control, and improved energy efficiency compared to conventional brushed DC motors.

    2. High-Efficiency Materials:

    The use of high-efficiency materials in DC motor design has been an area of focus for improving motor performance. Advanced magnetic materials, such as neodymium magnets, have allowed for stronger and more compact motor designs. These materials increase the motor’s power density, enabling higher torque output and improved efficiency. Additionally, advancements in materials used for motor windings and core laminations have reduced electrical losses and improved overall motor efficiency.

    3. Power Electronics and Motor Controllers:

    Advancements in power electronics and motor control technologies have greatly influenced DC motor design. The development of sophisticated motor controllers and efficient power electronic devices enables precise control of motor speed, torque, and direction. These technologies have resulted in more efficient and reliable motor operation, reduced energy consumption, and enhanced motor performance in various applications.

    4. Integrated Motor Systems:

    Integrated motor systems combine the motor, motor controller, and associated electronics into a single unit. These integrated systems offer compact designs, simplified installation, and improved overall performance. By integrating the motor and controller, issues related to compatibility and communication between separate components are minimized. Integrated motor systems are commonly used in applications such as robotics, electric vehicles, and industrial automation.

    5. IoT and Connectivity:

    The integration of DC motors with Internet of Things (IoT) technologies and connectivity has opened up new possibilities for monitoring, control, and optimization of motor performance. By incorporating sensors, actuators, and connectivity features, DC motors can be remotely monitored, diagnosed, and controlled. This enables predictive maintenance, energy optimization, and real-time performance adjustments, leading to improved efficiency and reliability in various applications.

    6. Advanced Motor Control Algorithms:

    Advanced motor control algorithms, such as sensorless control and field-oriented control (FOC), have contributed to improved performance and efficiency of DC motors. Sensorless control techniques eliminate the need for additional sensors by leveraging motor current and voltage measurements to estimate rotor position. FOC algorithms optimize motor control by aligning the magnetic field with the rotor position, resulting in improved torque and efficiency, especially at low speeds.

    These innovations and emerging technologies in DC motor design have revolutionized the capabilities and performance of DC motors. Brushless DC motors, high-efficiency materials, advanced motor control techniques, integrated motor systems, IoT connectivity, and advanced control algorithms have collectively contributed to more efficient, reliable, and versatile DC motor solutions across various industries and applications.

    China Good quality DC Coil Double Shaft Motor for Air Conditioning   vacuum pump and compressor	China Good quality DC Coil Double Shaft Motor for Air Conditioning   vacuum pump and compressor
    editor by CX 2024-02-10

    China Custom Electric Motors for Air Conditioner/Pumps/ Fan/Gear Motor vacuum pump design

    Product Description

    YX3 CE Approved IEC Standard Three Phase Asynchronous Electric Cement Mixer Gear Motor for Industry
    ———————————————————————————————

    Applications: Can be applied in the machines where continuous duty is required, typical applications like

    • Pumps
    • Fans
    • Compressors
    • Lifting equipment
    • Production industry

    General Description

    • Frame sizes: 63 to 355M/L     
    • Rated output: 0.18 to 375kW
    • Voltage: 380V                         
    • Frequency: 50Hz or 60Hz
    • Poles: 2, 4, 6, 8,10                   
    • Efficiency levels: IE2
    • Duty Cycle: S1                         
    • Enclosure: IC411 – TEFC
    • Insulation class: F                     
    • Degree of protection: IP55/56/65/66
    • Service Factor: 1.0                   
    • Regreasing system: Frame 250 and above

    Features
    Beautiful profile, high efficiency and energy saving (Level 3 of GB186~8-2012), low noise, little vibration, reliable running.

    Optional Features
    Electrical:
    Insulation Class:H; Design H
    Thermal Protection: PTC Thermistor, Thermostat or PT100
    Mechanical:
    Others mountings
    Protection Degree:IP56, IP65, IP66
    Sealing:Lip seal, Oil seal
    Space Heater, Double shaft ends
    Drain Hole

    Mounting
    Conventional mounting type and suitable frame size are given in following table(with “√”)

    Frame basic type derived type
    B3 B5 B35 V1 V3 V5 V6 B6 B7 B8 V15 V36 B14 B34 V18
    63~112
    132~160
    180~280
    315~355

    If there is no other request in the order or agreement, terminal box standard position is at the right side of the frame; data above may be changed without prior notice.

    SITE

    Show Room


    Product and System Certificates

    Patents

    Honors

    Premium Service

    Quality Control

    Wannan Motor Production Workshop and Flow Chart

    Hundreds of Certificates, Honors and more COMPANY information please go to “ABOUT US”
    —————————————————————————————————————————
    Welcome to contact us directly…
    wnmmotor
    https://youtu.be/frVvg3yQqNM

    WANNAN MOTOR      INDUSTRIAL SOLUTIONS
     

    /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    Application: Industrial
    Speed: Constant Speed
    Number of Stator: Three-Phase
    Function: Driving, Control, Cement Mixer Gear Motor
    Casing Protection: Protection Type
    Number of Poles: 2.4.6.8.10.12
    Samples:
    US$ 100/Piece
    1 Piece(Min.Order)

    |

    Customization:
    Available

    |

    gear motor

    Can gear motors be used in robotics, and if so, what are some notable applications?

    Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

    1. Robotic Arm Manipulation:

    Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

    2. Mobile Robots:

    Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

    3. Robotic Grippers and End Effectors:

    Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

    4. Autonomous Drones and UAVs:

    Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

    5. Humanoid Robots:

    Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

    6. Robotic Exoskeletons:

    Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

    These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

    gear motor

    How do gear motors compare to other types of motors in terms of power and efficiency?

    Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

    1. Gear Motors:

    Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

    2. Direct-Drive Motors:

    Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

    3. Stepper Motors:

    Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

    4. Servo Motors:

    Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

    5. Efficiency Considerations:

    When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

    In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

    gear motor

    In which industries are gear motors commonly used, and what are their primary applications?

    Gear motors find widespread use in various industries due to their versatility, reliability, and ability to provide controlled mechanical power. They are employed in a wide range of applications that require precise power transmission and speed control. Here’s a detailed explanation of the industries where gear motors are commonly used and their primary applications:

    1. Robotics and Automation:

    Gear motors play a crucial role in robotics and automation industries. They are used in robotic arms, conveyor systems, automated assembly lines, and other robotic applications. Gear motors provide the required torque, speed control, and directional control necessary for the precise movements and operations of robots. They enable accurate positioning, gripping, and manipulation tasks in industrial and commercial automation settings.

    2. Automotive Industry:

    The automotive industry extensively utilizes gear motors in various applications. They are used in power windows, windshield wipers, HVAC systems, seat adjustment mechanisms, and many other automotive components. Gear motors provide the necessary torque and speed control for these systems, enabling smooth and efficient operation. Additionally, gear motors are also utilized in electric and hybrid vehicles for powertrain applications.

    3. Manufacturing and Machinery:

    Gear motors find wide application in the manufacturing and machinery sector. They are used in conveyor belts, packaging equipment, material handling systems, industrial mixers, and other machinery. Gear motors provide reliable power transmission, precise speed control, and torque amplification, ensuring efficient and synchronized operation of various manufacturing processes and machinery.

    4. HVAC and Building Systems:

    In heating, ventilation, and air conditioning (HVAC) systems, gear motors are commonly used in damper actuators, control valves, and fan systems. They enable precise control of airflow, temperature, and pressure, contributing to energy efficiency and comfort in buildings. Gear motors also find applications in automatic doors, blinds, and gate systems, providing reliable and controlled movement.

    5. Marine and Offshore Industry:

    Gear motors are extensively used in the marine and offshore industry, particularly in propulsion systems, winches, and cranes. They provide the required torque and speed control for various marine operations, including steering, anchor handling, cargo handling, and positioning equipment. Gear motors in marine applications are designed to withstand harsh environments and provide reliable performance under demanding conditions.

    6. Renewable Energy Systems:

    The renewable energy sector, including wind turbines and solar tracking systems, relies on gear motors for efficient power generation. Gear motors are used to adjust the rotor angle and position in wind turbines, optimizing their performance in different wind conditions. In solar tracking systems, gear motors enable the precise movement and alignment of solar panels to maximize sunlight capture and energy production.

    7. Medical and Healthcare:

    Gear motors have applications in the medical and healthcare industry, including in medical equipment, laboratory devices, and patient care systems. They are used in devices such as infusion pumps, ventilators, surgical robots, and diagnostic equipment. Gear motors provide precise control and smooth operation, ensuring accurate dosing, controlled movements, and reliable functionality in critical medical applications.

    These are just a few examples of the industries where gear motors are commonly used. Their versatility and ability to provide controlled mechanical power make them indispensable in numerous applications requiring torque amplification, speed control, directional control, and load distribution. The reliable and efficient power transmission offered by gear motors contributes to the smooth and precise operation of machinery and systems in various industries.

    China Custom Electric Motors for Air Conditioner/Pumps/ Fan/Gear Motor   vacuum pump design		China Custom Electric Motors for Air Conditioner/Pumps/ Fan/Gear Motor   vacuum pump design
    editor by CX 2024-01-16